• This record comes from PubMed

Click-Chemistry-Mediated Synthesis of Silver Nanoparticle-Supported Polymer-Wrapped Carbon Nanotubes: Glucose Sensor and Antibacterial Material

. 2022 Oct 25 ; 7 (42) : 37095-37102. [epub] 20221013

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

We report a novel approach for the synthesis of silver nanoparticles (NPs) stabilized on polymer-wrapped carbon nanotubes (Ag@polymer/CNTs) for the non-enzymatic glucose sensing and antibacterial activity applications. Poly(styrene-alt-maleic anhydride) (PSM) was functionalized with amino furan to obtain furan-modified poly(styrene-alt-maleic anhydride) (PSMF), which was later grafted onto the surface of CNTs by Diels-Alder "click" reaction to afford a polymer/CNTs hybrid material. The photo-deposition technique was applied to immobilized small-sized (∼10 nm) AgNPs on the surface of the polymer/CNTs hybrid material using visible light irradiation. The resulting material, Ag@polymer/CNTs, showed promising electrocatalytic activity for the non-enzymatic glucose sensing and antibacterial activity in vitro assays toward Escherichia coli, Staphylococcus aureus, and Bacillus cereus bacteria strains. Covalent-bonded polymer layer-bearing carboxylic pendent groups to the CNTs might be playing a pivot role in not only stabilizing AgNPs but also facile electron-transfer reaction, thus demonstrating better activity.

See more in PubMed

Youn D. H.; Seol M.; Kim J. Y.; Jang J. W.; Choi Y.; Yong K.; Lee J. S. TiN nanoparticles on CNT-graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells. ChemSuSChem 2013, 6, 261–267. 10.1002/cssc.201200775. PubMed DOI

Zhang J.; Lou Y.; Zhou H.; Zhao Y.; Wang Z.; Shi L.; Yuan S. Electrodeposited AgAu nanoalloy enhancing photoelectric conversion efficiency of dye sensitized solar cells. Electrochim. Acta 2019, 324, 134858.10.1016/j.electacta.2019.134858. DOI

Maake P. J.; Bolokang A. S.; Arendse C. J.; Vohra V.; Iwuoha E. I.; Motaung D. E. Metal oxides and noble metals application in organic solar cells. Sol. Energy 2020, 207, 347–366. 10.1016/j.solener.2020.06.084. DOI

Sakhno O.; Yezhov P.; Hryn V.; Rudenko V.; Smirnova T. Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers 2020, 12, 480.10.3390/polym12020480. PubMed DOI PMC

Elemike E. E.; Onwudiwe D. C.; Wei L.; Chaogang L.; Zhiwei Z. Noble metal -semiconductor nanocomposites for optical, energy and electronics applications. Sol. Energy Mater. Sol. Cells 2019, 201, 110106.10.1016/j.solmat.2019.110106. DOI

Loza K.; Heggen M.; Epple M. Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Adv. Funct. Mater. 2020, 30, 1909260.10.1002/adfm.201909260. DOI

Rodrigues T. S.; da Silva A. G. M.; Camargo P. H. C. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A 2019, 7, 5857–5874. 10.1039/c9ta00074g. DOI

Davidson M.; Ji Y.; Leong G. J.; Kovach N. C.; Trewyn B. G.; Richards R. M. Hybrid Mesoporous Silica/Noble-Metal Nanoparticle Materials-Synthesis and Catalytic Applications. ACS Appl. Nano Mater. 2018, 1, 4386–4400. 10.1021/acsanm.8b00967. DOI

Taghavizadeh Yazdi M. E.; Khara J.; Sadeghnia H. R.; Esmaeilzadeh Bahabadi S.; Darroudi M. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Res. Chem. Intermed. 2018, 44, 1325.10.1007/s11164-017-3169-z. DOI

Siegel J.; Kolářová K.; Vosmanská V.; Rimpelová S.; Leitner J.; Švorčík V. Antibacterial properties of green-synthesized noble metal nanoparticles. Mater. Lett. 2013, 113, 59–62. 10.1016/j.matlet.2013.09.047. DOI

Rocca D. M.; Vanegas J. P.; Fournier K.; Becerra M. C.; Scaiano J. C.; Lanterna A. E. Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles. RSC Adv. 2018, 8, 40454–40463. 10.1039/c8ra08169g. PubMed DOI PMC

Moon K. S.; Choi E. J.; Bae J. M.; Park Y. B.; Oh S. Visible Light-Enhanced Antibacterial and Osteogenic Functionality of Au and Pt Nanoparticles Deposited on TiO2 Nanotubes. Materials 2020, 13, 3721.10.3390/ma13173721. PubMed DOI PMC

Bae E.; Park H. J.; Lee J.; Kim Y.; Yoon J.; Park K.; Choi K.; Yi J. Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environ. Toxicol. Chem. 2010, 29, 2154–2160. 10.1002/etc.278. PubMed DOI

Baker C.; Pradhan A.; Pakstis L.; Pochan D. J.; Shah S. I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005, 5, 244–249. 10.1166/jnn.2005.034. PubMed DOI

AL-Thabaiti S. A.; Al-Nowaiser F. M.; Obaid A. Y.; Al-Youbi A. O.; Khan Z. Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study. Colloids Surf., B 2008, 67, 230–237. 10.1016/j.colsurfb.2008.08.022. PubMed DOI

El-Kheshen A. A.; El-Rab S. F. G. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharma Chem. 2012, 4, 53–65.

Kyrychenko A.; Pasko D. A.; Kalugin O. N. Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: the role of polymer size and structure. Phys. Chem. Chem. Phys. 2017, 19, 8742–8756. 10.1039/c6cp05562a. PubMed DOI

Gur’eva L. L.; Tkachuk A. I.; Kuzub L. I.; Estrina G. A.; Knerel’man E. I.; Khodos I. I.; Rozenberg B. A. Synthesis of silver nanoparticles with polystyrylcarboxylate ligands. Polym. Sci., Ser. B 2013, 55, 139.10.1134/s1560090413030020. DOI

Kuzub L. I.; Gur’eva L. L.; Grishchuk A. A.; Estrina G. A.; Estrin Y. I.; Badamshina E. R. Regularities of the formation of silver nanoparticles with oligostyrylcarboxylate ligands. Polym. Sci., Ser. B 2015, 57, 608.10.1134/s1560090415060093. DOI

Chen P.; Wu Q.-S.; Ding Y.-P. Facile synthesis of monodisperse silver nanoparticles by bio-template of squama inner coat of onion. J. Nanopart. Res. 2008, 10, 207.10.1007/s11051-007-9220-z. DOI

Gopinathan P.; Ashok A. M.; Selvakumar R. Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial. Appl. Surf. Sci. 2013, 276, 717–722. 10.1016/j.apsusc.2013.03.159. DOI

Ahmad A.; Wei Y.; Syed F.; Imran M.; Khan Z. U. H.; Tahir K.; Khan A. U.; Raza M.; Khan Q.; Yuan Q. Size dependent catalytic activities of green synthesized gold nanoparticles and electro-catalytic oxidation of catechol on gold nanoparticles modified electrode. RSC Adv. 2015, 5, 99364–99377. 10.1039/c5ra20096b. DOI

Beyene H. D.; Werkneh A. A.; Bezabh H. K.; Ambaye T. G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Mater. Technol. 2017, 13, 18–23. 10.1016/j.susmat.2017.08.001. DOI

Haider M. S.; Shao G. N.; Imran S. M.; Park S. S.; Abbas N.; Tahir M. S.; Hussain M.; Bae W.; Kim H. T. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng., C 2016, 62, 732–745. 10.1016/j.msec.2016.02.025. PubMed DOI

Campisi S.; Chan-Thaw C. E.; Wang D.; Villa A.; Prati L. Metal nanoparticles on carbon based supports: The effect of the protective agent removal. Catal. Today 2016, 278, 91–96. 10.1016/j.cattod.2016.04.026. DOI

Rivera-Cárcamo C.; Serp P. Single Atom Catalysts on Carbon-Based Materials. ChemCatChem 2018, 10, 5058–5091. 10.1002/cctc.201801174. DOI

Carabineiro S. A. C.; Martins L. M. D. R. S.; Avalos-Borja M.; Buijnsters J. G.; Pombeiro A. J. L.; Figueiredo J. L. Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Appl. Catal., A 2013, 467, 279–290. 10.1016/j.apcata.2013.07.035. DOI

Ying C. U. I.; Yin-Jie K.; Yin-Jie Z.; Xiao-Hua L. I. U.; Bo C.; Jin-Hua C. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol. Acta Phys.-Chim. Sin. 2013, 29, 989–995. 10.3866/pku.whxb201303121. DOI

Zhang Y.; Xu C.; Li B.; Li Y. In situ growth of positively-charged gold nanoparticles on single-walled carbon nanotubes as a highly active peroxidase mimetic and its application in biosensing. Biosens. Bioelectron. 2013, 43, 205–210. 10.1016/j.bios.2012.12.016. PubMed DOI

John J.; Gravel E.; Namboothiri I. N. N.; Doris E. Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnol. Rev. 2012, 1, 515–539. 10.1515/ntrev-2012-0025. DOI

Rakov E. G. The chemistry and application of carbon nanotubes. Russ. Chem. Rev. 2001, 70, 827–863. 10.1070/rc2001v070n10abeh000660. DOI

Popov V. Carbon nanotubes: properties and application. Mater. Sci. Eng., R 2004, 43, 61–102. 10.1016/j.mser.2003.10.001. DOI

Jiang H.; Zhu L.; Moon K.-s.; Wong C. P. The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production. Carbon 2007, 45, 655–661. 10.1016/j.carbon.2006.10.006. DOI

Wang Z.; Liu Q.; Zhu H.; Liu H.; Chen Y.; Yang M. Dispersing multi-walled carbon nanotubes with water-soluble block copolymers and their use as supports for metal nanoparticles. Carbon 2007, 45, 285–292. 10.1016/j.carbon.2006.09.025. DOI

Lu X.; Imae T. Size-Controlled in situ Synthesis of Metal Nanoparticles on Dendrimer-Modified Carbon Nanotubes. J. Phys. Chem. C 2007, 111, 2416–2420. 10.1021/jp065613y. DOI

Georgakilas V.; Gournis D.; Tzitzios V.; Pasquato L.; Guldi D. M.; Prato M. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 2007, 17, 2679–2694. 10.1039/b700857k. DOI

Lu J. Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon 2007, 45, 1599–1605. 10.1016/j.carbon.2007.04.013. DOI

Shi K.; Pang X.; Zhitomirsky I. Silver nanoparticle assembly on carbon nanotubes triggered by reductive surfactant coating. Mater. Lett. 2016, 178, 128–131. 10.1016/j.matlet.2016.05.005. DOI

Dou Y.; Liu H.; Peng J.; Li M.; Li W.; Yang F. A green method for preparation of CNT/CS/AgNP composites and evaluation of their catalytic performance. J. Mater. Sci. 2016, 51, 5685–5694. 10.1007/s10853-016-9871-1. DOI

Kumar S.; Verma S.; Shawat E.; Nessim G. D.; Jain S. L. Amino-functionalized carbon nanofibres as an efficient metal free catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from CO2and 2-aminobenzonitriles. RSC Adv. 2015, 5, 24670–24674. 10.1039/c5ra01900a. DOI

Le C. M. Q.; Cao X. T.; Bach L. G.; Lee W.-K.; Kang I.; Lim K. T. Direct grafting imidazolium-based poly(ionic liquid) onto multiwalled carbon nanotubes via Diels-Alder ″click″ reaction. Mol. Cryst. Liq. Cryst. 2018, 660, 143–149. 10.1080/15421406.2018.1456136. DOI

Le C. M. Q.; Cao X. T.; Tu T. T. K.; Lee W.-K.; Lim K. T. Facile covalent functionalization of carbon nanotubes via Diels-Alder reaction in deep eutectic solvents. Appl. Surf. Sci. 2018, 450, 122–129. 10.1016/j.apsusc.2018.04.173. DOI

Králik M.; Biffis A. Catalysis by metal nanoparticles supported on functional organic polymers. J. Mol. Catal. A: Chem. 2001, 177, 113–138. 10.1016/s1381-1169(01)00313-2. DOI

Virkutyte J.; Varma R. S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011, 2, 837–846. 10.1039/c0sc00338g. DOI

Cao H. L.; Huang H. B.; Chen Z.; Karadeniz B.; Lü J.; Cao R. Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction. ACS Appl. Mater. Interfaces 2017, 9, 5231–5236. 10.1021/acsami.6b13186. PubMed DOI

Hamedani Y. P.; Hekmati M. Green biosynthesis of silver nanoparticles decorated on multi-walled carbon nanotubes using the extract of Pistacia atlantica leaves as a recyclable heterogeneous nanocatalyst for degradation of organic dyes in water. Polyhedron 2019, 164, 1–6. 10.1016/j.poly.2019.02.010. DOI

Min S.-H.; Lee G.-Y.; Ahn S.-H. Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites. Composites, Part B 2019, 161, 395–401. 10.1016/j.compositesb.2018.12.107. DOI

Lin J.; He C.; Zhao Y.; Zhang S. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens. Actuators, B 2009, 137, 768–773. 10.1016/j.snb.2009.01.033. DOI

Pandit B.; Sankapal B. R. Highly conductive energy efficient electroless anchored silver nanoparticles on MWCNTs as a supercapacitive electrode. New J. Chem. 2017, 41, 10808–10814. 10.1039/c7nj01792h. DOI

Hamouda H. I.; Abdel-Ghafar H. M.; Mahmoud M. H. H. Multi-walled carbon nanotubes decorated with silver nanoparticles for antimicrobial applications. J. Environ. Chem. Eng. 2021, 9, 105034.10.1016/j.jece.2021.105034. DOI

Murugan E.; Arumugam S.; Panneerselvam P. New nanohybrids from poly(propylene imine) dendrimer stabilized silver nanoparticles on multiwalled carbon nanotubes for effective catalytic and antimicrobial applications. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 111–124. 10.1080/00914037.2015.1038820. DOI

Deshmukh S. P.; Dhodamani A. G.; Patil S. M.; Mullani S. B.; More K. V.; Delekar S. D. Interfacially Interactive Ternary Silver-Supported Polyaniline/Multiwalled Carbon Nanotube Nanocomposites for Catalytic and Antibacterial Activity. ACS Omega 2020, 5, 219–227. 10.1021/acsomega.9b02526. PubMed DOI PMC

Alshehri S. M.; Almuqati T.; Almuqati N.; Al-Farraj E.; Alhokbany N.; Ahamad T. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohydr. Polym. 2016, 151, 135–143. 10.1016/j.carbpol.2016.05.018. PubMed DOI

Hekmati M.; Bonyasi F.; Javaheri H.; Hemmati S. Green synthesis of palladium nanoparticles using Hibiscus sabdariffa L. flower extract: Heterogeneous and reusable nanocatalyst in Suzuki coupling reactions. Appl. Organomet. Chem. 2017, 31, e375710.1002/aoc.3757. DOI

Consales M.; Cutolo A.; Penza M.; Aversa P.; Giordano M.; Cusano A. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes. J. Sens. 2008, 2008, 936074.10.1155/2008/936074. DOI

Quan H.; Park S.-U.; Park J. Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes. Electrochim. Acta 2010, 55, 2232–2237. 10.1016/j.electacta.2009.11.074. DOI

David M. E.; Ion R.-M.; Grigorescu R. M.; Iancu L.; Holban A. M.; Nicoara A. I.; Alexandrescu E.; Somoghi R.; Ganciarov M.; Vasilievici G.; Gheboianu A. I. Hybrid Materials Based on Multi-Walled Carbon Nanotubes and Nanoparticles with Antimicrobial Properties. Nanomaterials 2021, 11, 1415.10.3390/nano11061415. PubMed DOI PMC

Tambur P.; Bhagawan D.; Kumari B.; Kasa R. R. A facile synthesis of implantation of silver nanoparticles on oxygen-functionalized multi-walled carbon nanotubes: structural and antibacterial activity. SN Appl. Sci. 2020, 2, 981.10.1007/s42452-020-2797-x. DOI

Cao X. T.; Vu-Quang H.; Doan V. D.; Nguyen V. C. One-step approach of dual-responsive prodrug nanogels via Diels-Alder reaction for drug delivery. Colloid Polym. Sci. 2021, 299, 675–683. 10.1007/s00396-020-04789-z. DOI

Mayrhofer S.; Domig K. J.; Mair C.; Zitz U.; Huys G.; Kneifel W. Comparison of Broth Microdilution, Etest, and Agar Disk Diffusion Methods for Antimicrobial Susceptibility Testing of Lactobacillus acidophilus Group Members. Appl. Environ. Microbiol. 2008, 74, 3745–3748. 10.1128/aem.02849-07. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...