• This record comes from PubMed

Vegetation impact on atmospheric moisture transport under increasing land-ocean temperature contrasts

. 2022 Oct ; 8 (10) : e11173. [epub] 20221020

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Links

PubMed 36325135
PubMed Central PMC9618993
DOI 10.1016/j.heliyon.2022.e11173
PII: S2405-8440(22)02461-6
Knihovny.cz E-resources

Destabilization of the water cycle threatens human lives and livelihoods. Meanwhile our understanding of whether and how changes in vegetation cover could trigger transitions in moisture availability remains incomplete. This challenge calls for better evidence as well as for the theoretical concepts to describe it. Here we briefly summarize the theoretical questions surrounding the role of vegetation cover in the dynamics of a moist atmosphere. We discuss the previously unrecognized sensitivity of local wind power to condensation rate as revealed by our analysis of the continuity equation for a gas mixture. Using the framework of condensation-induced atmospheric dynamics, we then show that with the temperature contrast between land and ocean increasing up to a critical threshold, ocean-to-land moisture transport reaches a tipping point where it can stop or even reverse. Land-ocean temperature contrasts are affected by both global and regional processes, in particular, by the surface fluxes of sensible and latent heat that are strongly influenced by vegetation. Our results clarify how a disturbance of natural vegetation cover, e.g., by deforestation, can disrupt large-scale atmospheric circulation and moisture transport: an increase of sensible heat flux upon deforestation raises land surface temperature and this can elevate the temperature difference between land and ocean beyond the threshold. In view of the increasing pressure on natural ecosystems, successful strategies of mitigating climate change require taking into account the impact of vegetation on moist atmospheric dynamics. Our analysis provides a theoretical framework to assess this impact. The available data for the Northern Hemisphere indicate that the observed climatological land-ocean temperature contrasts are close to the threshold. This can explain the increasing fluctuations in the continental water cycle including droughts and floods and signifies a yet greater potential importance for large-scale forest conservation.

See more in PubMed

Ahrends A., Hollingsworth P.M., Beckschäfer P., Chen H., Zomer R.J., Zhang L., Wang M., Xu J. China's fight to halt tree cover loss. Proc. R. Soc. B. 2017;284 PubMed PMC

Aleinikov A. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: possible anthropogenic causes and long-term effects. Nat. Conserv. Res. 2019;4:21–34.

Alkama R., Cescatti A. Biophysical climate impacts of recent changes in global forest cover. Science. 2016;351:600–604. PubMed

Andrich M.A., Imberger J. The effect of land clearing on rainfall and fresh water resources in Western Australia: a multi-functional sustainability analysis. Int. J. Sustain. Dev. World Ecol. 2013;20:549–563.

Angelini I.M., Garstang M., Davis R.E., Hayden B., Fitzjarrald D.R., Legates D.R., Greco S., Macko S., Connors V. On the coupling between vegetation and the atmosphere. Theor. Appl. Climatol. 2011;105:243–261.

Baker J.C.A., Spracklen D.V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. Forests Glob. Change. 2019;2

Boers N., Marwan N., Barbosa H.M.J., Kurths J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 2017;7 PubMed PMC

Boos W.R., Storelvmo T. Near-linear response of mean monsoon strength to a broad range of radiative forcings. Proc. Natl. Acad. Sci. USA. 2016;113:1510–1515. PubMed PMC

Boos W.R., Storelvmo T. Reply to Levermann et al.: linear scaling for monsoons based on well-verified balance between adiabatic cooling and latent heat release. Proc. Natl. Acad. Sci. USA. 2016;113:E2350–E2351. PubMed PMC

Buras A., Rammig A., Zang C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences. 2020;17:1655–1672.

Caballero C.B., Ruhoff A., Biggs T. Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: a systematic review. Sci. Total Environ. 2022;808 PubMed

Cerasoli S., Yin J., Porporato A. Cloud cooling effects of afforestation and reforestation at midlatitudes. Proc. Natl. Acad. Sci. USA. 2021;118 PubMed PMC

Chan P.W., Hassanzadeh P., Kuang Z. Evaluating indices of blocking anticyclones in terms of their linear relations with surface hot extremes. Geophys. Res. Lett. 2019;46:4904–4912.

Charney J. Reply. Q. J. R. Meteorol. Soc. 1976;102:468.

Charney J.G. Dynamics of deserts and drought in the Sahel. Q. J. R. Meteorol. Soc. 1975;101:193–202.

Claussen M. Modeling bio-geophysical feedback in the African and Indian monsoon region. Clim. Dyn. 1997;13:247–257.

Cornwall W. Europe's deadly floods leave scientists stunned. Science. 2021;373:372–373. PubMed

Debkov N.M., Aleinikov A.A., Gradel A., Bocharov A.Y., Klimova N.V., Pudzha G.I. Impacts of the invasive four-eyed fir bark beetle (Polygraphus proximus Blandf.) on Siberian fir (Abies sibirica Ledeb.) forests in southern Siberia. Geogr. Environ. Sustain. 2019;12:79–97.

Duveiller G., Filipponi F., Ceglar A., Bojanowski J., Alkama R., Cescatti A. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 2021;12:4337. PubMed PMC

EASAC . German National Academy of Sciences Leopoldina; 2017. Multi-functionality and sustainability in the European Union's forests.https://issuu.com/easaceurope/docs/easac_forests_web_complete EASAC policy report 32. Publication on webpage at.

Emanuel K. The relevance of theory for contemporary research in atmospheres, oceans, and climate. AGU Adv. 2020;1

van der Ent R.J., Savenije H.H.G., Schaefli B., Steele-Dunne S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010;46

Friedl M.A., Strahler A.H., Hodges J. In: ISLSCP Initiative II Collection. Data Set. Hall F.G., G G.C., Meeson B., Los S., de Colstoun E.B., Landis D., editors. 2010. ISLSCP II MODIS (collection 4) IGBP land cover, 2000–2001.http://daac.ornl.gov/ Available On-line. from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee.

Funk J.M., Aguilar-Amuchastegui N., Baldwin-Cantello W., Busch J., Chuvasov E., Evans T., Griffin B., Harris N., Ferreira M.N., Petersen K., Phillips O., Soares M.G., van der Hoff R.J. Securing the climate benefits of stable forests. Climate Policy. 2019;19:845–860.

Gorshkov V.G. Springer; Berlin, Heidelberg: 1995. Physical and Biological Bases of Life Stability: Man, Biota, Environment.

Gorshkov V.G., Makarieva A.M., Nefiodov A.V. Condensation of water vapor in the gravitational field. J. Exp. Theor. Phys. 2012;115:723–728.

Gromtsev A. Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fenn. 2002;36:41–55.

Gu X., Zhang Q., Li J., Singh V.P., Liu J., Sun P., He C., Wu J. Intensification and expansion of soil moisture drying in warm season over Eurasia under global warming. J. Geophys. Res., Atmos. 2019;124:3765–3782.

Hagemann S., Chen C., Haerter J.O., Heinke J., Gerten D., Piani C. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 2011;12:556–578.

Hesslerová P., Huryna H., Pokorný J., Procházka J. The effect of forest disturbance on landscape temperature. Ecol. Eng. 2018;120:345–354.

Hill S.A. Theories for past and future monsoon rainfall changes. Curr. Clim. Change Rep. 2019;5:160–171.

Huryna H., Pokorný J. The role of water and vegetation in the distribution of solar energy and local climate: a review. Folia Geobot. 2016;51:191–208.

Jaramillo A., Mesa O.J., Raymond D.J. Is condensation-induced atmospheric dynamics a new theory of the origin of the winds? J. Atmos. Sci. 2018;75:3305–3312.

Jaramillo A., Mesa O.J., Raymond D.J. Reply to “Comments on ‘Is condensation-induced atmospheric dynamics a new theory of the origin of the winds?‴. J. Atmos. Sci. 2019;76:2187–2191.

Jia G., Shevliakova E., Artaxo P., De Noblet-Ducoudré N., Houghton R., House J., Kitajima K., Lennard C., Popp A., Sirin A., Sukumar R., Verchot L. In: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Shukla P.R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.-O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., Ferrat M., Haughey E., Luz S., Neogi S., Pathak M., Petzold J., Portugal Pereira J., Vyas P., Huntley E., Kissick K., Belkacemi M., Malley J., editors. 2019. Chapter 2. Land-climate interactions.https://www.ipcc.ch/srccl/cite-report/ In press.

Jiang B., Liang S. Improved vegetation greenness increases summer atmospheric water vapor over Northern China. J. Geophys. Res., Atmos. 2013;118:8129–8139.

Jiménez-Rodríguez C.D., Coenders-Gerrits M., Schilperoort B., González-Angarita A.P., Savenije H. Vapor plumes in a tropical wet forest: spotting the invisible evaporation. Hydrol. Earth Syst. Sci. 2021;25:619–635.

Jonsson M., Bengtsson J., Moen J., Gamfeldt L., Snäll T. Stand age and climate influence forest ecosystem service delivery and multifunctionality. Environ. Res. Lett. 2020;15

Jonsson R., Rinaldi F. The impact on global wood-product markets of increasing consumption of wood pellets within the European Union. Energy. 2017;133:864–878.

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996;77:437–471.

Krause A., Arneth A., Anthoni P., Rammig A. Legacy effects from historical environmental changes dominate future terrestrial carbon uptake. Earth's Future. 2020;8

Kuo Y.H., Neelin J.D., Mechoso C.R. Tropical convective transition statistics and causality in the water vapor-precipitation relation. J. Atmos. Sci. 2017;74:915–931.

Lauri P., Forsell N., Korosuo A., Havlík P., Obersteiner M., Nordin A. Impact of the

Lawrence D., Vandecar K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change. 2015;5:27–36.

Leite-Filho A.T., Soares-Filho B.S., Davis J.L., Abrahão G.M., Börner J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 2021;12:2591. PubMed PMC

Levermann A., Petoukhov V., Schewe J., Schellnhuber H.J. Abrupt monsoon transitions as seen in paleorecords can be explained by moisture-advection feedback. Proc. Natl. Acad. Sci. USA. 2016;113:E2348–E2349. PubMed PMC

Levermann A., Schewe J., Petoukhov V., Held H. Basic mechanism for abrupt monsoon transitions. Proc. Natl. Acad. Sci. USA. 2009;106:20572–20577. PubMed PMC

Lindzen R.S., Nigam S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 1987;44:2418–2436.

Lugato E., Alberti G., Gioli B., Kaplan J., Peressotti A., Miglietta F. Long-term pan evaporation observations as a resource to understand the water cycle trend: case studies from Australia. Hydrol. Sci. J. 2013;58:1287–1296.

Mahmood R., Pielke R.A., McAlpine C.A. Climate-relevant land use and land cover change policies. Bull. Am. Meteorol. Soc. 2016;97:195–202.

Makarieva A.M., Gorshkov V.G. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci. 2007;11:1013–1033.

Makarieva A.M., Gorshkov V.G. Reply to A.G.C.A. Meesters et al.’s comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land”. Hydrol. Earth Syst. Sci. 2009;13:1307–1311.

Makarieva A.M., Gorshkov V.G. The biotic pump: condensation, atmospheric dynamics and climate. Int. J. Water. 2010;5:365–385.

Makarieva A.M., Gorshkov V.G., Li B.L. Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol. Complex. 2009;6:302–307.

Makarieva A.M., Gorshkov V.G., Li B.L. Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor. Appl. Climatol. 2013;111:79–96.

Makarieva A.M., Gorshkov V.G., Nefiodov A.V. Condensational theory of stationary tornadoes. Phys. Lett. A. 2011;375:2259–2261.

Makarieva A.M., Gorshkov V.G., Nefiodov A.V. Condensational power of air circulation in the presence of a horizontal temperature gradient. Phys. Lett. A. 2014;378:294–298.

Makarieva A.M., Gorshkov V.G., Nefiodov A.V., Sheil D., Nobre A.D., Bunyard P., Li B.L. The key physical parameters governing frictional dissipation in a precipitating atmosphere. J. Atmos. Sci. 2013;70:2916–2929.

Makarieva A.M., Gorshkov V.G., Nefiodov A.V., Sheil D., Nobre A.D., Li B.L. Comments on “The tropospheric land-sea warming contrast as the driver of tropical sea level pressure changes”. J. Climate. 2015;28:4293–4307.

Makarieva A.M., Gorshkov V.G., Nefiodov A.V., Sheil D., Nobre A.D., Shearman P.L., Li B.L. Kinetic energy generation in heat engines and heat pumps: the relationship between surface pressure, temperature and circulation cell size. Tellus, Ser. A Dyn. Meteorol. Oceanogr. 2017;69

Makarieva A.M., Gorshkov V.G., Nobre A.D., Nefiodov A.V., Sheil D., Nobre P., Li B.L. Comments on “Is condensation-induced atmospheric dynamics a new theory of the origin of the winds?”. J. Atmos. Sci. 2019;76:2181–2185.

Makarieva A.M., Gorshkov V.G., Sheil D., Nobre A.D., Bunyard P., Li B.L. Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content. J. Hydrometeorol. 2014;15:411–426.

Makarieva A.M., Nefiodov A.V., Morozov V.E., Aleynikov A.A., Vasilov R.G. Science in the vanguard of rethinking the role of forests in the third millennium: comments on the draft concept of the federal law “Forest code of the Russian Federation”. Forest Sci. Issues. 2020;3 http://jfsi.ru/en/3-3-2020-makarieva-et-al/

Marengo J.A., Espinoza J.C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 2016;36:1033–1050.

Meesters A.G.C.A., Dolman A.J., Bruijnzeel L.A. Comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land” by A.M. Makarieva and V.G. Gorshkov. Hydrol. Earth Syst. Sci. Hydrol. Earth Syst. Sci. 2009;2007;1113:1013–1033. 1299–1305.

Meier R., Schwaab J., Seneviratne S.I., Sprenger M., Lewis E., Davin E.L. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 2021;14:473–478.

Miralles D.G., Gentine P., Seneviratne S.I., Teuling A.J. Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N.Y. Acad. Sci. 2019;1436:19–35. PubMed PMC

Molina R.D., Salazar J.F., Martínez J.A., Villegas J.C., Arias P.A. Forest-induced exponential growth of precipitation along climatological wind streamlines over the Amazon. J. Geophys. Res., Atmos. 2019;124:2589–2599.

Moomaw W.R., Masino S.A., Faison E.K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. Forests Glob. Change. 2019;2

Murakami S. Water and energy balance of canopy interception as evidence of splash droplet evaporation hypothesis. Hydrol. Sci. J. 2021;66:1248–1264.

Nobre P., Malagutti M., Urbano D.F., de Almeida R.A.F., Giarolla E. Amazon deforestation and climate change in a coupled model simulation. J. Climate. 2009;22:5686–5697.

O'Connor J.C., Dekker S.C., Staal A., Tuinenburg O.A., Rebel K.T., Santos M.J. Forests buffer against variations in precipitation. Glob. Change Biol. 2021;27:4686–4696. PubMed PMC

Pearce F. Weather makers. Science. 2020;368:1302–1305. PubMed

Philip S.Y., Kew S.F., van Oldenborgh G.J., Yang W., Vecchi G.A., Anslow F.S., Li S., Seneviratne S.I., Luu L.N., Arrighi J., Singh R., van Aalst M., Hauser M., Schumacher D.L., Marghidan C.P., Ebi K.L., Bonnet R., Vautard R., Tradowsky J., Coumou D., Lehner F., Wehner M., Rodell C., Stull R., Howard R., Gillett N., Otto F.E.L. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. 2021. https://www.worldweatherattribution.org/wp-content/uploads/NW-US-extreme-heat-2021-scientific-report-WWA.pdf World Weather Attribution report.

Pielke Sr R.A., Pitman A., Niyogi D., Mahmood R., McAlpine C., Hossain F., Goldewijk K.K., Nair U., Betts R., Fall S., Reichstein M., Kabat P., de Noblet N. Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim. Change. 2011;2

Potapov P., Hansen M., Laestadius L., Turubanova S., Yaroshenko A., Thies C., Smith W., Zhuravleva I., Komarova A., Minnemeyer S., Esipova E. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017;3 PubMed PMC

Potapov P., Yaroshenko A., Turubanova S., Dubinin M., Laestadius L., Thies C., Aksenov D., Egorov A., Yesipova Y., Glushkov I., Karpachevskiy M., Kostikova A., Manisha A., Tsybikova E., Zhuravleva I. Mapping the world's intact forest landscapes by remote sensing. Ecol. Soc. 2008;13:51. http://www.ecologyandsociety.org/vol13/iss2/art51/

Poveda G., Jaramillo L., Vallejo L.F. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res. 2014;50:98–118.

Pradhan R., Singh N., Singh R.P. Onset of summer monsoon in Northeast India is preceded by enhanced transpiration. Sci. Rep. 2019;9 PubMed PMC

Rich R.L., Frelich L.E., Reich P.B. Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J. Ecol. 2007;95:1261–1273.

Ripley E.A. Comment on the paper ‘Dynamics of deserts and drought in the Sahel’ by J.G. Charney. Q. J. R. Meteorol. Soc. 1976;102:466–467.

Rodwell M.J., Hoskins B.J. Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc. 1996;122:1385–1404.

Rohde R.A., Hausfather Z. The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data. 2020;12:3469–3479.

Ruiz-Vásquez M., Arias P.A., Martínez J.A., Espinoza J.C. Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Clim. Dyn. 2020;54:4169–4189.

Sabatini F.M., Bluhm H., Kun Z., Aksenov D., Atauri J.A., Buchwald E., Burrascano S., Cateau E., Diku A., Marques Duarte I., Fernández López Á.B., Garbarino M., Grigoriadis N., Horváth F., Keren S., Kitenberga M., Kiš A., Kraut A., Ibisch P.L., Larrieu L., Lombardi F., Matovic B., Melu R.N., Meyer P., Midteng R., Mikac S., Mikoláš M., Mozgeris G., Panayotov M., Pisek R., Nunes L., Ruete A., Schickhofer M., Simovski B., Stillhard J., Stojanovic D., Szwagrzyk J., Tikkanen O.P., Toromani E., Volosyanchuk R., Vrška T., Waldherr M., Yermokhin M., Zlatanov T., Zagidullina A., Kuemmerle T. European primary forest database (EPFD) v2.0. 2020. https://www.biorxiv.org/content/10.1101/2020.10.30.362434v2 Preprint on webpage at. PubMed DOI PMC

Salati E., Nobre C.A. Possible climatic impacts of tropical deforestation. Clim. Change. 1991;19:177–196.

Sheil D., Bargués-Tobella A., Ilstedt U., Ibisch P.L., Makarieva A., McAlpine C., Morris C.E., Murdiyarso D., Nobre A.D., Poveda G., Spracklen D.V., Sullivan C.A., Tuinenburg O.A., van der Ent R.J. Forest restoration: transformative trees. Science. 2019;366:316–317. PubMed

Shorohova E., Fedorchuk V., Kuznetsova M., Shvedova O. Wind-induced successional changes in pristine boreal Picea abies forest stands: evidence from long-term permanent plot records. Forestry, Int. J. Forest Res. 2008;81:335–359.

Sitnov S.A., Mokhov I.I., Lupo A.R. Evolution of the water vapor plume over Eastern Europe during summer 2010 atmospheric blocking. Adv. Meteorol. 2014;2014 11 pages.

Sukachev V.N. Nauka; Leningrad: 1975. Selected Papers. Phytocenology Problems, vol. 3. 544 p. (In Russian)

te Wierik S.A., Cammeraat E.L.H., Gupta J., Artzy-Randrup Y.A. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res. 2021;57

Winckler J., Lejeune Q., Reick C.H., Pongratz J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 2019;46:745–755.

Woollings T., Barriopedro D., Methven J., Son S.W., Martius O., Harvey B., Sillmann J., Lupo A.R., Seneviratne S. Blocking and its response to climate change. Curr. Clim. Change Rep. 2018;4:287–300. PubMed PMC

Wright J.S., Fu R., Worden J.R., Chakraborty S., Clinton N.E., Risi C., Sun Y., Yin L. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA. 2017;114:8481–8486. PubMed PMC

Zemp D.C., Schleussner C.F., Barbosa H.M.J., Hirota M., Montade V., Sampaio G., Staal A., Wang-Erlandsson L., Rammig A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017;8 PubMed PMC

Zemp D.C., Schleussner C.F., Barbosa H.M.J., Rammig A. Deforestation effects on Amazon forest resilience. Geophys. Res. Lett. 2017;44:6182–6190.

Zhao M., Geruo A., Zhang J., Velicogna I., Liang C., Li Z. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2021;4:56–62.

Zinda J.A., Zhang Z. Explaining heterogeneous afforestation outcomes: how community officials and households mediate tree cover change in China. World Dev. 2019;122:385–398.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...