Comparison of gross pathology inspection and 9.4 T magnetic resonance imaging in the evaluation of radiofrequency ablation lesions in the left ventricle of the swine heart
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36338496
PubMed Central
PMC9626654
DOI
10.3389/fphys.2022.834328
PII: 834328
Knihovny.cz E-zdroje
- Klíčová slova
- animal experiments, catheter ablation of arrhythmias, comparison of methods, evaluation of radiofrequency ablation lesions, ex vivo MRI scanning, gross pathology inspection, high-resolution MRI evaluation,
- Publikační typ
- časopisecké články MeSH
Aims: Gross pathology inspection (patho) is the gold standard for the morphological evaluation of focal myocardial pathology. Examination with 9.4 T magnetic resonance imaging (MRI) is a new method for very accurate display of myocardial pathology. The aim of this study was to demonstrate that lesions can be measured on high-resolution MRI images with the same accuracy as on pathological sections and compare these two methods for the evaluation of radiofrequency (RF) ablation lesion dimensions in swine heart tissue during animal experiment. Methods: Ten pigs underwent radiofrequency ablations in the left ventricle during animal experiment. After animal euthanasia, hearts were explanted, flushed with ice-cold cardioplegic solution to relax the whole myocardium, fixed in 10% formaldehyde and scanned with a 9.4 T magnetic resonance system. Anatomical images were processed using ImageJ software. Subsequently, the hearts were sliced, slices were photographed and measured in ImageJ software. Different dimensions and volumes were compared. Results: The results of both methods were statistically compared. Depth by MRI was 8.771 ± 2.595 mm and by patho 9.008 ± 2.823 mm; p = 0.198. Width was 10.802 ± 2.724 mm by MRI and 11.125 ± 2.801 mm by patho; p = 0.049. Estuary was 2.006 ± 0.867 mm by MRI and 2.001 ± 0.872 mm by patho; p = 0.953. The depth at the maximum diameter was 4.734 ± 1.532 mm on MRI and 4.783 ± 1.648 mm from the patho; p = 0.858. The volumes of the lesions calculated using a formula were 315.973 ± 257.673 mm3 for MRI and 355.726 ± 255.860 mm3 for patho; p = 0.104. Volume directly measured from MRI with the "point-by-point" method was 671.702 ± 362.299 mm3. Conclusion: Measurements obtained from gross pathology inspection and MRI are fully comparable. The advantage of MRI is that it is a non-destructive method enabling repeated measurements in all possible anatomical projections.
1st Department of Internal Medicine Cardioangiology St Anne's University Hospital Brno Brno Czech
Biostatistics International Clinical Research Center St Anne's University Hospital Brno Brno Czech
Department of Biology Faculty of Medicine Masaryk University Brno Brno Czech
Department of Pathology University Hospital Brno Brno Czech
Division of Cardiology and Structural Heart Diseases Medical University of Silesia Katowice Poland
IHU LIRYC Electrophysiology and Heart Modeling Institute Fondation Bordeaux Université Pessac France
Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech
Nanotechnology CEITEC Masaryk University Brno Czech
University Bordeaux INSERM Cardiothoracic Research Center of Bordeaux Pessac France
Zobrazit více v PubMed
Badger Troy J., Daccarett Marcos, Akoum Nazem W., YawAdjei-Poku A., Burgon Nathan S., Haslam Thomas S., et al. (2010). Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: Lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circ. Arrhythm. Electrophysiol. 3 (3), 249–259. 10.1161/CIRCEP.109.868356 PubMed DOI PMC
Berte Benjamin, Hubert Cochet, Magat Julie, Naulin Jérôme, Ghidoli Daniele, Pillois Xavier, et al. (2015). Irrigated needle ablation creates larger and more transmural ventricular lesions compared with standard unipolar ablation in an ovine model. Circ. Arrhythm. Electrophysiol. 8 (6), 1498–1506. 10.1161/CIRCEP.115.002963 PubMed DOI
Bolte H., Jahnke T., Schäfer F. K. W., Wenke R., Hoffmann B., Freitag-Wolf S., et al. (2007). Interobserver-variability of lung nodule volumetry considering different segmentation algorithms and observer training levels. Eur. J. Radiol. 64 (2), 285–295. 10.1016/j.ejrad.2007.02.031 PubMed DOI
Bulte Jeff W. M., Einstein Ophira, Reinhartz Etti, Zywicke Holly A., Douglas Trevor, Frank Joseph A., et al. (2003). MR microscopy of magnetically labeled neurospheres transplanted into the lewis EAE rat brain. Magn. Reson. Med. 50 (1), 201–205. 10.1002/mrm.10511 PubMed DOI
Delacretaz E., Wtlliam G. S., Winters G. L., Lynch K., Peter L., Lynch K., et al. (1999). Ablation of ventricular tachycardia with a saline-cooled radiofrequency catheter: Anatomic and histologic characteristics of the lesions in humans. J. Cardiovasc. Electrophysiol. 10 (6), 860–865. 10.1111/j.1540-8167.1999.tb00267.x PubMed DOI
Dickfeld Timm, Kato Ritsushi, Zviman Menekem, Nazarian Saman, Dong Jun, Ashikaga Hiroshi, et al. (2007). Characterization of acute and subacute radiofrequency ablation lesions with non-enhanced magnetic resonance imaging. Heart rhythm. 4 (2), 208–214. 10.1016/j.hrthm.2006.10.019 PubMed DOI PMC
Dinkel J., Khalilzadeh O., Hintze C., Fabel M., Puderbach M., Eichinger M., et al. (2013). Inter-observer reproducibility of semi-automatic tumor diameter measurement and volumetric analysis in patients with lung cancer. Lung Cancer 82 (1), 76–82. 10.1016/j.lungcan.2013.07.006 PubMed DOI
Erasmus Jeremy, Gladish Gregory, Broemeling Lyle, Bradley Sabloff, Truong Mylene, Herbst Roy, et al. (2003). Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: Implications for assessment of tumor response. J. Clin. Oncol. 21 (32), 2574–2582. 10.1200/JCO.2003.01.144 PubMed DOI
Erturk M. A., Li X., Pierre-Fancois V., Ugurbil K., Gregory J. (2019). Evolution of UHF body imaging in the human torso at 7T: Technology, applications, and future directions. Top. Magn. Reson. Imaging 28 (3), 101–124. 10.1097/RMR.0000000000000202 PubMed DOI PMC
Ertürk M. Arcan, Wu Xiaoping, Eryaman Yiğitcan, Pierre-François Van de Moortele, Auerbach Edward J., Lagore Russell L., et al. (2017). Toward imaging the body at 10.5 tesla. Magn. Reson. Med. 77 (1), 434–443. 10.1002/mrm.26487 PubMed DOI PMC
Gepstein L., Gal H., Shpun S., Cohen D., Shlomo A. (1999). Atrial linear ablations in pigs: Chronic effects on atrial electrophysiology and pathology. Circulation 100 (4), 419–426. 10.1161/01.CIR.100.4.419 PubMed DOI
Guerra Jose M., Jorge E., Raga S., Galvez-Monton C., Alonso-Martin C., Rodriguez-Font E., et al. (2017). Effects of open-irrigated radiofrequency ablation catheter design on lesion formation and complications: In vitro comparison of 6 different devices: In vitro comparison of open-irrigated catheters. J. Cardiovasc. Electrophysiol. 24, 1157–1162. 10.1111/jce.12175 PubMed DOI
Haines D. E., Verow A. F. (1990). Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation 82 (3), 1034–1038. 10.1161/01.CIR.82.3.1034 PubMed DOI
Haines David. (2018). Biophysics of ablation: Application to technology. J. Cardiovasc. Electrophysiol. 15 (10), S11–S11. 10.1046/j.1540-8167.2004.15102.x PubMed DOI
Haines David E., Watson Denny D. (1989). Tissue heating during radiofrequency catheter ablation: A thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall. Pacing Clin. Electrophysiol. 12 (6), 962–976. 10.1111/j.1540-8159.1989.tb05034.x PubMed DOI
Haverkamp Wilhelm, Hindricks Gerhard, Gulker Hartmut, Rissel Ulrich, Pfennings Winnfried, Martin Borggrefe, et al. (1989). Coagulation of ventricular myocardium using radiofrequency alternating current: Bio-physical aspects and experimental findings. Pacing Clin. Electrophysiol. 12 (1), 187–195. 10.1111/j.1540-8159.1989.tb02646.x PubMed DOI
Heo Dan, Lim Soyeon, Lee Jiye, Lee Myung Eun, Cho Soyoung, Jeong Jisu, et al. (2019). Radiological assessment of effectiveness of soluble RAGE in attenuating angiotensin II-induced LVH mouse model using in vivo 9.4T MRI. Sci. Rep. 9 (23), 8475. 10.1038/s41598-019-44933-6 PubMed DOI PMC
Ishihara Yuri, Reza Nazafat John V. Wylie, Linguraru Marius G., Josephson Mark E., Howe Robert D., Manning Warren J., et al. 2007. “MRI evaluation of RF ablation scarring for atrial fibrillation treatment.” In , edited by Kevin R. Cleary and michael I. Miga, 65090Q. San Diego, CA. 10.1117/12.710323 DOI
Kalbfleisch Steven J., Langberg Jonathan J. (1992). Catheter ablation with radiofrequency energy: Biophysical aspects and clinical applications. J. Cardiovasc. Electrophysiol. 3 (2), 173–186. 10.1111/j.1540-8167.1992.tb01106.x DOI
Krahn Philippa R. P., Singh Sheldon M., Biswas Labonny, Yak Nicolas, KevanAnderson J. T., Barry Jennifer, et al. (2018). Cardiovascular magnetic resonance guided ablation and intra-procedural visualization of evolving radiofrequency lesions in the left ventricle. J. Cardiovasc. Magn. Reson. 20. 10.1186/s12968-018-0437-z PubMed DOI PMC
Lardo Albert C., McVeigh Elliot R., Pitayadet J., Berger Ronald D., Hugh C., Lima J., et al. (2000). Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102 (6), 698–705. 10.1161/01.CIR.102.6.698 PubMed DOI
Lazebnik R. S., Brent D., Weinberg M. S. B., Jonathan S. L., Wilson D. L. (2005). Semiautomatic parametric model-based 3D lesion segmentation for evaluation of MR-guided radiofrequency ablation therapy. Acad. Radiol. 12 (12), 1491–1501. 10.1016/j.acra.2005.07.011 PubMed DOI
Lipinski M. J., Vardan J. C., Karen C. B., Fuster V., Fallon J. T., Fisher E. A., et al. (2006). MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn. Reson. Med. 56 (3), 601–610. 10.1002/mrm.20995 PubMed DOI
Markman Timothy M., Saman Nazarian. (2017). Cardiac magnetic resonance for lesion assessment in the electrophysiology laboratory. Circ. Arrhythm. Electrophysiol. 10 (11), e005839. 10.1161/CIRCEP.117.005839 PubMed DOI PMC
Muenzel Daniela, Engels Heinz-Peter, Bruegel Melanie, Kehl Victoria, Rummeny Ernst, Metz Stephan. (2012). Intra- and inter-observer variability in measurement of target lesions: Implication on response evaluation according to RECIST 1.1. Radiol. Oncol. 46 (1), 8–18. 10.2478/v10019-012-0009-z PubMed DOI PMC
Nakagawa H., Yamanashi W. S., Pitha J. V., Arruda M., Wang X., Ohtomo K., et al. (1995). Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 91 (8), 2264–2273. 10.1161/01.CIR.91.8.2264 PubMed DOI
Nath S., DiMarco J. P., Haines D. E. (1994). Basic aspects of radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 5 (10), 863–876. 10.1111/j.1540-8167.1994.tb01125.x PubMed DOI
Organ L. W. (1976). Electrophysiologic principles of radiofrequency lesion making. Appl. Neurophysiol. 39 (2), 69–76. 10.1159/000102478 PubMed DOI
O’Donnell David, Nadurata Voltaire. (2004). Radiofrequency ablation for post infarction ventricular tachycardia. Indian Pacing Electrophysiol. J. 4 (2), 63–72. PubMed PMC
Rueden Curtis T., Johannes Schindelin, Mark C. H., Ellen T. A., Eliceiri Kevin W., Walter A. E., et al. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma. 18 (76), 529. 10.1186/s12859-017-1934-z PubMed DOI PMC
Santos Braggion, Fernanda Maria, Koenigkam-Santos Marcel, Reis Teixeira Sara, Volpe G. J., Trad H. S. (2013). Magnetic resonance imaging evaluation of cardiac masses. Arq. Bras. Cardiol. 101, 263–272. 10.5935/abc.20130150 PubMed DOI PMC
Schindelin Johannes, Rueden Curtis T., Hiner Mark C., Eliceiri Kevin W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82 (7–8), 518–529. 10.1002/mrd.22489 PubMed DOI PMC
Schneider Jürgen E., Lanz Titus, Barnes Hannah, Bohl Steffen, Lygate Craig A., Ordidge Roger J., et al. (2011). Accelerated cardiac magnetic resonance imaging in the mouse using an eight-channel array at 9.4 tesla: Accelerated cardiac MRI in mice at 9.4 T. Magn. Reson. Med. 65 (1), 60–70. 10.1002/mrm.22605 PubMed DOI PMC
Schneider Jürgen E., Lanz Titus, Barnes Hannah, Medway Debra, Lygate Craig A., Smart Sean, et al. (2008). Ultra-fast and accurate assessment of cardiac function in rats using accelerated MRI at 9.4 tesla. Magn. Reson. Med. 59 (3), 636–641. 10.1002/mrm.21491 PubMed DOI
Song Kyoung D., Lee Min Woo, Rhim Hyunchul, Kang Tae Wook, DongCha Ik, Yang Jehoon. (2017). Chronological changes of radiofrequency ablation zone in rabbit liver: An in vivo correlation between gross pathology and histopathology. Br. J. Radiol. 90 (1071), 20160361. 10.1259/bjr.20160361 PubMed DOI PMC
Suzuki Atsushi, Lehmann H. Immo, Wang Songyun, Monahan Kristi H., Parker Kay D., Rettmann Maryam E., et al. (2021). Impact of myocardial fiber orientation on lesions created by a novel heated saline-enhanced radiofrequency needle-tip catheter: An MRI lesion validation study. Heart rhythm. 18 (3), 443–452. 10.1016/j.hrthm.2020.11.015 PubMed DOI
Templeton McCormick. (1961). A simple macrotome for soft tissues. Stain Technol. 36 (4), 255–256. 10.3109/10520296109113287 PubMed DOI
Thiesse P., Ollivier L., Di Stefano-Louineau D., Négrier S., Savary J., Pignard K., et al. (2016). Response rate accuracy in oncology trials: Reasons for interobserver variability. Groupe français d’Immunothérapie of the fédération nationale des centres de Lutte contre le cancer. J. Clin. Oncol. 15, 3507–3514. 10.1200/JCO.1997.15.12.3507 PubMed DOI
Tofig Bawer J., Peter Lukac, Nielsen Jan M., EsbenHansen S. S., RasmusTougaard S., HenrikJensen K., et al. (2019). Radiofrequency ablation lesions in low-intermediate-and normal-voltage myocardium: An in vivo study in a porcine heart model. Europace 21 (12), 1919–1927. 10.1093/europace/euz247 PubMed DOI
Ursell P. C., Gardner P. I., Albala A., Fenoglio J. J., Wit A. L., AlbAlA A. (1985). Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ. Res. 56 (3), 436–451. 10.1161/01.RES.56.3.436 PubMed DOI
Wech Tobias, Seiberlich Nicole, Schindele Andreas, Grau Vicente, Diffley Leonie, Gyngell Michael L., et al. (2016). Development of real-time magnetic resonance imaging of mouse hearts at 9.4 tesla – simulations and first application. IEEE Trans. Med. Imaging 35 (3), 912–920. 10.1109/TMI.2015.2501832 PubMed DOI PMC
Zhao Binsheng, Tan Yongqiang, Bell Daniel J., Marley Sarah E., Guo Pingzhen, Mann Helen, et al. (2013). Exploring intra- and inter-reader variability in uni-dimensional, Bi-dimensional, and volumetric measurements of solid tumors on CT scans reconstructed at different slice intervals. Eur. J. Radiol. 82 (6), 959–968. 10.1016/j.ejrad.2013.02.018 PubMed DOI PMC