Population Pharmacokinetics of Prophylactic Cefazolin in Cardiac Surgery with Standard and Minimally Invasive Extracorporeal Circulation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36358235
PubMed Central
PMC9686470
DOI
10.3390/antibiotics11111582
PII: antibiotics11111582
Knihovny.cz E-resources
- Keywords
- antibiotic prophylaxis, cardiopulmonary bypass, cefazoline, glomerular filtration rate, nonlinear mixed-effects modeling,
- Publication type
- Journal Article MeSH
The objectives of this study were to develop a population pharmacokinetic model of prophylactically administered cefazolin in patients undergoing cardiac surgery with and without the use of the cardiopulmonary bypass of both existing types-standard (ECC) and minimallyu invasive extracorporeal circulation (MiECC)-and to propose cefazoline dosing optimization based on this model. A total of 65 adult patients undergoing cardiac surgery were recruited to this clinical trial. A prophylactic cefazolin dose of 2 g was intravenously administered before surgery. Blood samples were collected using a rich sampling design and cefazolin serum concentrations were measured using the HPLC/UV method. The pharmacokinetic population model was calculated using a nonlinear mixed-effects modeling approach, and the Monte Carlo simulation was used to evaluate the PK/PD target attainment. The population cefazolin central volume of distribution (Vd) of 4.91 L increased by 0.51 L with each 1 m2 of BSA, peripheral Vd of 22.07 L was reduced by 0.77 L or 0.79 L when using ECC or MiECC support, respectively, while clearance started at 0.045 L/h and increased by 0.49 L/h with each 1 mL/min/1.73 m2 of eGFR. ECC/MiECC was shown to be covariate of cefazolin Vd, but without relevance to clinical practice, while eGFR was most influential for the PK/PD target attainment. The standard dose of 2 g was sufficient for PK/PD target attainment throughout surgery in patients with normal renal status or with renal impairment. In patients with augmented renal clearance, an additive cefazolin dose should be administered 215, 245, 288 and 318 min after the first dose at MIC of 4, 3, 2 and 1.5 mg/L, respectively.
See more in PubMed
Lepelletier D., Bourigault C., Roussel J.C., Lasserre C., Leclere B., Corvec S., Pattier S., Lepoivre T., Baron O., Despins P. Epidemiology and prevention of surgical site infections after cardiac surgery. Médecine Mal. Infect. 2013;43:403–409. doi: 10.1016/j.medmal.2013.07.003. PubMed DOI
Soderquist B. Surgical site infections in cardiac surgery: Microbiology. Apmis. 2007;115:1008–1011. doi: 10.1111/j.1600-0463.2007.00833.x. PubMed DOI
Engelman R., Shahian D., Shemin R., Guy T.S., Bratzler D., Edwards F., Jacobs M., Fernando H., Bridges C., Workforce on Evidence-Based Medicine, Society of Thoracic Surgeons practice The Society of Thoracic Surgeons practice guideline series: Antibiotic prophylaxis in cardiac surgery, part II: Antibiotic choice. Ann. Thorac. Surg. 2007;83:1569–1576. doi: 10.1016/j.athoracsur.2006.09.046. PubMed DOI
State Institute for Drug Control of Czech Republic Azepo—Summary of Product Characteristics. [(accessed on 14 August 2022)]. Available online: https://www.sukl.cz/modules/medication/detail.php?code=0016600&tab=texts.
Song H.K., Diggs B.S., Slater M.S., Guyton S.W., Ungerleider R.M., Welke K.F. Improved quality and cost-effectiveness of coronary artery bypass grafting in the United States from 1988 to 2005. J. Thorac. Cardiovasc. Surg. 2009;137:65–69. doi: 10.1016/j.jtcvs.2008.09.053. PubMed DOI
Butler J., Rocker G.M., Westaby S. Inflammatory response to cardiopulmonary bypass. Ann. Thorac. Surg. 1993;55:552–559. doi: 10.1016/0003-4975(93)91048-R. PubMed DOI
Speir A.M., Kasirajan V., Barnett S.D., Fonner E., Jr. Additive costs of postoperative complications for isolated coronary artery bypass grafting patients in Virginia. Ann. Thorac. Surg. 2009;88 doi: 10.1016/j.athoracsur.2009.03.076. PubMed DOI
Anastasiadis K., Bauer A., Antonitsis P., Gygax E., Schaarschmidt J., Carrel T. Minimal invasive Extra-Corporeal Circulation (MiECC): A revolutionary evolution in perfusion. Interact. Cardiovasc. Thorac. Surg. 2014;19:541–542. doi: 10.1093/icvts/ivu304. PubMed DOI
Anastasiadis K., Murkin J., Antonitsis P., Bauer A., Ranucci M., Gygax E., Schaarschmidt J., Fromes Y., Philipp A., Eberle B., et al. Use of minimal invasive extracorporeal circulation in cardiac surgery: Principles, definitions and potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS) Interact. Cardiovasc. Thorac. Surg. 2016;22:647–662. doi: 10.1093/icvts/ivv380. PubMed DOI PMC
Paruk F., Sime F.B., Lipman J., Roberts J.A. Dosing antibiotic prophylaxis during cardiopulmonary bypass-a higher level of complexity? A structured review. Int. J. Antimicrob. Agents. 2017;49:395–402. doi: 10.1016/j.ijantimicag.2016.12.014. PubMed DOI
Lehot J.J., Reverdy M.E., Etienne J., Corot C., Nervi C., Sear J., Fleurette J., Estanove S. Cefazolin and netilmicin serum levels during and after cardiac surgery with cardiopulmonary bypass. J. Cardiothorac. Anesth. 1990;4:204–209. doi: 10.1016/0888-6296(90)90239-C. PubMed DOI
Fellinger E.K., Leavitt B.J., Hebert J.C. Serum levels of prophylactic cefazolin during cardiopulmonary bypass surgery. Ann. Thorac. Surg. 2002;74:1187–1190. doi: 10.1016/S0003-4975(02)03916-4. PubMed DOI
Caffarelli A.D., Holden J.P., Baron E.J., Lemmens H.J., D’Souza H., Yau V., Olcott C.t., Reitz B.A., Miller D.C., van der Starre P.J. Plasma cefazolin levels during cardiovascular surgery: Effects of cardiopulmonary bypass and profound hypothermic circulatory arrest. J. Thorac. Cardiovasc. Surg. 2006;131:1338–1343. doi: 10.1016/j.jtcvs.2005.11.047. PubMed DOI
Kosaka T., Hosokawa K., Shime N., Taniguchi F., Kokufu T., Hashimoto S., Fujiwara H., Yaku H., Sugioka N., Okada K., et al. Effects of renal function on the pharmacokinetics and pharmacodynamics of prophylactic cefazolin in cardiothoracic surgery. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:193–199. doi: 10.1007/s10096-011-1293-z. PubMed DOI
Lanckohr C., Horn D., Voeller S., Hempel G., Fobker M., Welp H., Koeck R., Ellger B. Pharmacokinetic characteristics and microbiologic appropriateness of cefazolin for perioperative antibiotic prophylaxis in elective cardiac surgery. J. Thorac. Cardiovasc. Surg. 2016;152:603–610. doi: 10.1016/j.jtcvs.2016.04.024. PubMed DOI
Asada M., Nagata M., Mizuno T., Uchida T., Takahashi H., Makita K., Arai H., Kijima S., Echizen H., Yasuhara M. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass in adult patients undergoing cardiac surgery. Eur. J. Clin. Pharmacol. 2021;77:735–745. doi: 10.1007/s00228-020-03045-1. PubMed DOI
Santavy P., Kubickova V., Sima M., Urbanek K. Population pharmacokinetics of three alternative prophylactic antibiotics during cardiac surgery with extracorporeal circulation. Biomed. Pap. 2022. Online ahead of print . PubMed DOI
Kubickova V., Racova Z., Strojil J., Santavy P., Urbanek K. Separation of ampicillin on polar-endcapped phase: Development of the HPLC method to achieve its correct dosage in cardiac surgery. Acta Chromatogr. 2022. Online ahead of print . DOI
Kubíčková V., Šantavý P., Urbánek K. Determination of ampicillin plasma concentrations in single-dose administration for cardiac surgery prophylaxis. Klin. Farmakol. Farm. 2022;36:4–7. doi: 10.36290/far.2022.001. DOI
European Medicine Agency Guideline on Bioanalytical Method Validation. [(accessed on 14 August 2022)]; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf.
Naik B.I., Roger C., Ikeda K., Todorovic M.S., Wallis S.C., Lipman J., Roberts J.A. Comparative total and unbound pharmacokinetics of cefazolin administered by bolus versus continuous infusion in patients undergoing major surgery: A randomized controlled trial. Br. J. Anaesth. 2017;118:876–882. doi: 10.1093/bja/aex026. PubMed DOI