• This record comes from PubMed

Polymorphism rs7079 in miR-31/-584 Binding Site in Angiotensinogen Gene Associates with Earlier Onset of Coronary Artery Disease in Central European Population

. 2022 Oct 30 ; 13 (11) : . [epub] 20221030

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Angiotensinogen (AGT) represents a key component of the renin-angiotensin-aldosterone system (RAAS). Polymorphisms in the 3' untranslated region (3'UTR) of the AGT gene may alter miRNA binding and cause disbalance in the RAAS. Within this study, we evaluated the possible association of AGT +11525C/A (rs7079) with the clinical characteristics of patients with coronary artery diseases (CAD). Selective coronarography was performed in 652 consecutive CAD patients. Clinical characteristics of the patients, together with peripheral blood samples for DNA isolation, were collected. The genotyping of rs7079 polymorphism was performed with TaqMan® SNP Genotyping Assays. We observed that patients with the CC genotype were referred for coronarography at a younger age compared to those with the AA+CA genotypes (CC vs. AA+CA: 59.1 ± 9.64 vs. 60.91 ± 9.5 (years), p = 0.045). Moreover, according to the logistic regression model, patients with the CC genotype presented more often with restenosis than those with the CA genotype (p = 0.0081). In conclusion, CC homozygotes for rs7079 present with CAD symptoms at a younger age compared with those with the AA+CA genotype, and they are more prone to present with restenosis compared with heterozygotes.

See more in PubMed

Benigni A., Cassis P., Remuzzi G. Angiotensin II revisited: New roles in inflammation, immunology and aging. EMBO Mol. Med. 2010;2:247–257. doi: 10.1002/emmm.201000080. PubMed DOI PMC

Silva G.M., França-Falcão M.S., Calzerra N.T.M., Luz M.S., Gadelha D.D.A., Balarini C.M., Queiroz T.M. Role of Renin-Angiotensin System Components in Atherosclerosis: Focus on Ang-II, ACE2, and Ang-1-7. Front. Physiol. 2020;11:1067. doi: 10.3389/fphys.2020.01067. PubMed DOI PMC

Furuya K., Yamaguchi E., Itoh A., Hizawa N., Ohnuma N., Kojima J., Kodama N., Kawakami Y. Deletion polymorphism in the angiotensin I converting enzyme (ACE) gene as a genetic risk factor for sarcoidosis. Thorax. 1996;51:777–780. doi: 10.1136/thx.51.8.777. PubMed DOI PMC

White P.C., Slutsker L. Haplotype analysis of CYP11B2. Endocr. Res. 1995;21:437–442. doi: 10.3109/07435809509030459. PubMed DOI

Slaby O., Bienertova-Vasku J., Svoboda M., Vyzula R. Genetic polymorphisms, and microRNAs: New direction in molecular epidemiology of solid cancer. J. Cell. Mol. Med. 2012;16:8–21. doi: 10.1111/j.1582-4934.2011.01359.x. PubMed DOI PMC

Mopidevi B., Ponnala M., Kumar A. Human angiotensinogen +11525 C/A polymorphism modulates its gene expression through microRNA binding. Physiol. Genom. 2013;45:901–906. doi: 10.1152/physiolgenomics.00056.2013. PubMed DOI PMC

Machal J., Novak J., Hezova R., Zlamal F., Vasku A., Slaby O., Bienertova-Vasku J. Polymorphism in miR-31 and miR-584 binding site in the angiotensinogen gene differentially influences body fat distribution in both sexes. Genes Nutr. 2015;10:488. doi: 10.1007/s12263-015-0488-9. PubMed DOI PMC

Wu Y., Wang M., Zhang J., Sun N., Li C. A new model of the mechanism underlying lead poisoning: SNP in miRNA target region influence the AGT expression level. Hereditas. 2019;156:6. doi: 10.1186/s41065-019-0084-x. PubMed DOI PMC

Máchal J., Vašků A., Kincl V., Hlavna M., Bartáková V., Jurajda M., Meluzín J. Association between three single nucleotide polymorphisms in eotaxin (CCL 11) gene, hexanucleotide repetition upstream, severity and course of coronary atherosclerosis. J. Appl. Genet. 2012;53:271–278. doi: 10.1007/s13353-012-0104-2. PubMed DOI

Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Al-Najai M., Muiya P., Tahir A.I., Elhawari S., Gueco D., Andres E., Mazhar N., Altassan N., Alshahid M., Dzimiri N. Association of the angiotensinogen gene polymorphism with atherosclerosis and its risk traits in the Saudi population. BMC Cardiovasc. Disord. 2013;13:17. doi: 10.1186/1471-2261-13-17. PubMed DOI PMC

Ono M., Ochi T., Munekage K., Ogasawara M., Hirose A., Nozaki Y., Takahashi M., Okamoto N., Saibara T. Angiotensinogen gene haplotype is associated with the prevalence of Japanese non-alcoholic steatohepatitis. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2011;41:1223–1229. doi: 10.1111/j.1872-034X.2011.00883.x. PubMed DOI

Wang H.-W., Huang T.-S., Lo H.-H., Huang P.-H., Lin C.-C., Chang S.-J., Liao K.-H., Tsai C.-H., Chan C.-H., Tsai C.-F., et al. Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2014;34:857–869. doi: 10.1161/ATVBAHA.113.303001. PubMed DOI

Weber M., Baker M.B., Patel R.S., Quyyumi A.A., Bao G., Searles C.D. MicroRNA Expression Profile in CAD Patients and the Impact of ACEI/ARB. Cardiol. Res. Pract. 2011;2011:532915. doi: 10.4061/2011/532915. PubMed DOI PMC

Jiang F., Li J., Wu G., Miao Z., Lu L., Ren G., Wang X. Upregulation of microRNA-335 and microRNA-584 contributes to the pathogenesis of severe preeclampsia through downregulation of endothelial nitric oxide synthase. Mol. Med. Rep. 2015;12:5383–5390. doi: 10.3892/mmr.2015.4018. PubMed DOI

Kim S., Lee K.-S., Choi S., Kim J., Lee D.-K., Park M., Park W., Kim T.-H., Hwang J.Y., Won M.-H., et al. NF-κB–responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. J. Biol. Chem. 2018;293:18989–19000. doi: 10.1074/jbc.RA118.005197. PubMed DOI PMC

Navarro E., Mallén A., Cruzado J.M., Torras J., Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin. Transl. Med. 2020;9:5. doi: 10.1186/s40169-020-0256-3. PubMed DOI PMC

Buccheri D., Piraino D., Andolina G., Cortese B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J. Thorac. Dis. 2016;8:E1150–E1162. doi: 10.21037/jtd.2016.10.93. PubMed DOI PMC

Suárez Y., Wang C., Manes T.D., Pober J.S. TNF-induced miRNAs Regulate TNF-induced expression of E-Selectin and ICAM-1 on Human Endothelial Cells: Feedback Control of Inflammation. J. Immunol. Baltim. Md. 1950. 2010;184:21–25. doi: 10.4049/jimmunol.0902369. PubMed DOI PMC

Huang R., Chen X., Long Y., Chen R. MiR-31 promotes Th22 differentiation through targeting Bach2 in coronary heart disease. Biosci. Rep. 2019;39:BSR20190986. doi: 10.1042/BSR20190986. PubMed DOI PMC

Zhang L., Wang T., Wang X., Du R., Zhang K., Liu X., Ma D., Yu S., Su G., Li Z., et al. Elevated frequencies of circulating Th22 cell in addition to Th17 cell and Th17/Th1 cell in patients with acute coronary syndrome. PLoS ONE. 2013;8:e71466. doi: 10.1371/journal.pone.0071466. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...