Osteosarcopenia in Patients with Chronic Obstructive Pulmonary Diseases: Which Pathophysiologic Implications for Rehabilitation?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36361194
PubMed Central
PMC9657186
DOI
10.3390/ijerph192114314
PII: ijerph192114314
Knihovny.cz E-zdroje
- Klíčová slova
- chronic obstructive pulmonary disease, dietary supplements, osteoporosis, physical exercise, pulmonary rehabilitation, rehabilitation, sarcopenia,
- MeSH
- chronická obstrukční plicní nemoc * epidemiologie MeSH
- lidé MeSH
- metabolické nemoci kostí * MeSH
- osteoporóza * diagnóza MeSH
- rizikové faktory MeSH
- sarkopenie * diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chronic obstructive pulmonary disease (COPD) is a burdensome condition affecting a growing number of people worldwide, frequently related to major comorbidities and functional impairment. In these patients, several factors might have a role in promoting both bone and muscle loss, including systemic inflammation, corticosteroid therapies, sedentary behaviours, deconditioning, malnutrition, smoking habits, and alcohol consumption. On the other hand, bone and muscle tissues share several linkages from functional, embryological, and biochemical points of view. Osteosarcopenia has been recently defined by the coexistence of osteoporosis and sarcopenia, but the precise mechanisms underpinning osteosarcopenia in patients with COPD are still unknown. In this scenario, a deeper understanding of the molecular basis of osteosarcopenia might guide clinicians in a personalized approach integrating skeletal muscle health with the pulmonary rehabilitation framework in COPD. Taken together, our results summarized the currently available evidence about the multilevel interactions between osteosarcopenia and COPD to pave the way for a comprehensive approach targeting the most common risk factors of these pathological conditions. Further studies are needed to clarify the role of modern clinical strategies and telemedicine solutions to optimize healthcare delivery in patients with COPD, including osteopenia, osteoporosis, and sarcopenia screening in these subjects.
Zobrazit více v PubMed
Global Initiative for Chronic Obstructive Lung Disease (GOLD) Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease: 2022 Report. [(accessed on 28 August 2022)]. Available online: www.goldcopd.org.
Sepúlveda-Loyola W., Osadnik C., Phu S., Morita A.A., Duque G., Probst V.S. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle. 2020;11:1164–1176. doi: 10.1002/jcsm.12600. PubMed DOI PMC
Cecins E., Cavalheri V., Taaffe D.R., Hill A.M., Hug S., Hill K. Prevalence of suspected poor bone health in people with chronic obstructive pulmonary disease—A cross-sectional exploratory study. Chronic Respir. Dis. 2022;19:14799731221120429. doi: 10.1177/14799731221120429. PubMed DOI PMC
Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169. PubMed DOI PMC
Kim S.H., Shin M.J., Shin Y.B., Kim K.U. Sarcopenia Associated with Chronic Obstructive Pulmonary Disease. J. Bone Metab. 2019;26:65. doi: 10.11005/jbm.2019.26.2.65. PubMed DOI PMC
Sözen T., Özışık L., Başaran N. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4:46–56. doi: 10.5152/eurjrheum.2016.048. PubMed DOI PMC
de Sire A., Lippi L., Aprile V., Calafiore D., Folli A., D’Abrosca F., Moalli S., Lucchi M., Ammendolia A., Invernizzi M. Pharmacological, Nutritional, and Rehabilitative Interventions to Improve the Complex Management of Osteoporosis in Patients with Chronic Obstructive Pulmonary Disease: A Narrative Review. J. Pers. Med. 2022;12:1626. doi: 10.3390/jpm12101626. PubMed DOI PMC
Mukund K., Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020;12:e1462. doi: 10.1002/wsbm.1462. PubMed DOI PMC
Brzeszczyńska J., Brzeszczyński F., Hamilton D.F., McGregor R., Simpson A.H.R. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Jt. Res. 2020;9:798–807. doi: 10.1302/2046-3758.911.BJR-2020-0178.R1. PubMed DOI PMC
Spruit M.A., Singh S.J., Garvey C., ZuWallack R., Nici L., Rochester C., Hill K., Holland A.E., Lareau S.C., Man W.D., et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013;188:e13–e64. doi: 10.1164/rccm.201309-1634ST. PubMed DOI
Adeloye D., Song P., Zhu Y., Campbell H., Sheikh A., Rudan I. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: A systematic review and modelling analysis. Lancet. Respir. Med. 2022;10:447–458. doi: 10.1016/S2213-2600(21)00511-7. PubMed DOI PMC
[(accessed on 26 August 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease--(copd)
Lippi L., D’Abrosca F., Folli A., Dal Molin A., Moalli S., Maconi A., Ammendolia A., de Sire A., Invernizzi M. Closing the Gap between Inpatient and Outpatient Settings: Integrating Pulmonary Rehabilitation and Technological Advances in the Comprehensive Management of Frail Patients. Int. J. Environ. Res. Public Health. 2022;19:9150. doi: 10.3390/ijerph19159150. PubMed DOI PMC
Marengoni A., Vetrano D.L., Manes-Gravina E., Bernabei R., Onder G., Palmer K. The Relationship Between COPD and Frailty: A Systematic Review and Meta-Analysis of Observational Studies. Chest. 2018;154:21–40. doi: 10.1016/j.chest.2018.02.014. PubMed DOI
Morley J.E., Vellas B., van Kan G.A., Anker S.D., Bauer J.M., Bernabei R., Cesari M., Chumlea W.C., Doehner W., Evans J., et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013;14:392–397. doi: 10.1016/j.jamda.2013.03.022. PubMed DOI PMC
Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., Seeman T., Tracy R., Kop W.J., Burke G., et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001;56:M146–M156. doi: 10.1093/gerona/56.3.M146. PubMed DOI
Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034. PubMed DOI PMC
Gao J., Deng M., Li Y., Yin Y., Zhou X., Zhang Q., Hou G. Resistin as a Systemic Inflammation-Related Biomarker for Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease. Front. Nutr. 2022;9:921399. doi: 10.3389/fnut.2022.921399. PubMed DOI PMC
Yeung S.S.Y., Reijnierse E.M., Pham V.K., Trappenburg M.C., Lim W.K., Meskers C.G.M., Maier A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle. 2019;10:485–500. doi: 10.1002/jcsm.12411. PubMed DOI PMC
Clynes M.A., Gregson C.L., Bruyère O., Cooper C., Dennison E.M. Osteosarcopenia: Where osteoporosis and sarcopenia collide. Rheumatology. 2021;60:529–537. doi: 10.1093/rheumatology/keaa755. PubMed DOI
de Sire A., Ferrillo M., Lippi L., Agostini F., de Sire R., Ferrara P.E., Raguso G., Riso S., Roccuzzo A., Ronconi G., et al. Sarcopenic Dysphagia, Malnutrition, and Oral Frailty in Elderly: A Comprehensive Review. Nutrients. 2022;14:982. doi: 10.3390/nu14050982. PubMed DOI PMC
Lippi L., de Sire A., Mezian K., Curci C., Perrero L., Turco A., Andaloro S., Ammendolia A., Fusco N., Invernizzi M. Impact of exercise training on muscle mitochondria modifications in older adults: A systematic review of randomized controlled trials. Aging Clin. Exp. Res. 2022;34:1495–1510. doi: 10.1007/s40520-021-02073-w. PubMed DOI
Lippi L., Uberti F., Folli A., Turco A., Curci C., d’Abrosca F., de Sire A., Invernizzi M. Impact of nutraceuticals and dietary supplements on mitochondria modifications in healthy aging: A systematic review of randomized controlled trials. Aging Clin. Exp. Res. 2022;3 doi: 10.1007/s40520-022-02203-y. PubMed DOI
Peñailillo L., Valladares-Ide D., Jannas-Velas S., Flores-Opazo M., Jalón M., Mendoza L., Nuñez I., Diaz-Patiño O. Effects of eccentric, concentric and eccentric/concentric training on muscle function and mass, functional performance, cardiometabolic health, quality of life and molecular adaptations of skeletal muscle in COPD patients: A multicentre randomised trial. BMC Pulm. Med. 2022;22:278. doi: 10.1186/s12890-022-02061-4. PubMed DOI PMC
Ferrucci L., Baroni M., Ranchelli A., Lauretani F., Maggio M., Mecocci P., Ruggiero C. Interaction between bone and muscle in older persons with mobility limitations. Curr. Pharm. Des. 2014;20:3178–3197. doi: 10.2174/13816128113196660690. PubMed DOI PMC
Chen Y.W., Ramsook A.H., Coxson H.O., Bon J., Reid W.D. Prevalence and Risk Factors for Osteoporosis in Individuals With COPD: A Systematic Review and Meta-analysis. Chest. 2019;156:1092–1110. doi: 10.1016/j.chest.2019.06.036. PubMed DOI
Felsenthal N., Zelzer E. Mechanical regulation of musculoskeletal system development. Development. 2017;144:4271–4283. doi: 10.1242/dev.151266. PubMed DOI PMC
Huang A.H. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev. Biol. 2017;429:420–428. doi: 10.1016/j.ydbio.2017.03.028. PubMed DOI PMC
Tsukamoto M., Mori T., Nakamura E., Okada Y., Fukuda H., Yamanaka Y., Sabanai K., Wang K.Y., Hanagiri T., Kuboi S., et al. Chronic obstructive pulmonary disease severity in middle-aged and older men with osteoporosis associates with decreased bone formation. Osteoporos. Sarcopenia. 2020;6:179–184. doi: 10.1016/j.afos.2020.11.003. PubMed DOI PMC
Wang Z., Li W., Guo Q., Wang Y., Ma L., Zhang X. Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BioMed Res. Int. 2018;2018:1–27. doi: 10.1155/2018/6057589. PubMed DOI PMC
Zhang L., Sun Y. Muscle-Bone Crosstalk in Chronic Obstructive Pulmonary Disease. Front. Endocrinol. 2021;12:724911. doi: 10.3389/fendo.2021.724911. PubMed DOI PMC
Caramori G., Ruggeri P., Arpinelli F., Salvi L., Girbino G. Long-term use of inhaled glucocorticoids in patients with stable chronic obstructive pulmonary disease and risk of bone fractures: A narrative review of the literature. Int. J. Chron. Obs. Pulmon. Dis. 2019;14:1085–1097. doi: 10.2147/COPD.S190215. PubMed DOI PMC
Burckhardt P. Corticosteroids and bone: A review. Horm. Res. 1984;20:59–64. doi: 10.1159/000179975. PubMed DOI
Oray M., Abu Samra K., Ebrahimiadib N., Meese H., Foster C.S. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf. 2016;15:457–465. doi: 10.1517/14740338.2016.1140743. PubMed DOI
Schäcke H., Döcke W.D., Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002;96:23–43. doi: 10.1016/S0163-7258(02)00297-8. PubMed DOI
Yin L., Li N., Jia W., Wang N., Liang M., Yang X., Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res. 2021;172:105807. doi: 10.1016/j.phrs.2021.105807. PubMed DOI
Bonaldo P., Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 2013;6:25–39. doi: 10.1242/dmm.010389. PubMed DOI PMC
Inoue D., Watanabe R., Okazaki R. COPD and osteoporosis: Links, risks, and treatment challenges. Int. J. Chron. Obs. Pulmon. Dis. 2016;11:637–648. doi: 10.2147/COPD.S79638. PubMed DOI PMC
Van Staa T.P., Leufkens H.G., Abenhaim L., Zhang B., Cooper C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 2000;15:993–1000. doi: 10.1359/jbmr.2000.15.6.993. PubMed DOI
Kobza A.O., Herman D., Papaioannou A., Lau A.N., Adachi J.D. Understanding and managing corticosteroid-induced osteoporosis. Open Access Rheumatol. Res. Rev. 2021;13:177. doi: 10.2147/OARRR.S282606. PubMed DOI PMC
Chalitsios C.V., Shaw D.E., McKeever T.M. Risk of osteoporosis and fragility fractures in asthma due to oral and inhaled corticosteroids: Two population-based nested case-control studies. Thorax. 2021;76:21–28. doi: 10.1136/thoraxjnl-2020-215664. PubMed DOI
Pereira R.M.R., Perez M.O., Paula A.P., Moreira C., Castro C.H.M., Zerbini C.A.F., Domiciano D.S., de Azevedo E., Mendonca L.M.C., Shinzato M.M., et al. Guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis: An update of Brazilian Society of Rheumatology (2020) Arch. Osteoporos. 2021;16:49. doi: 10.1007/s11657-021-00902-z. PubMed DOI
Loke Y.K., Cavallazzi R., Singh S. Risk of fractures with inhaled corticosteroids in COPD: Systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66:699–708. doi: 10.1136/thx.2011.160028. PubMed DOI
Weatherall M., James K., Clay J., Perrin K., Masoli M., Wijesinghe M., Beasley R. Dose-response relationship for risk of non-vertebral fracture with inhaled corticosteroids. Clin. Exp. Allergy. 2008;38:1451–1458. doi: 10.1111/j.1365-2222.2008.03029.x. PubMed DOI
Yang I.A., Clarke M.S., Sim E.H., Fong K.M. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012;2012:Cd002991. doi: 10.1002/14651858.CD002991.pub3. PubMed DOI PMC
Chua J.R., Tee M.L. Association of sarcopenia with osteoporosis in patients with chronic obstructive pulmonary disease. Osteoporos. Sarcopenia. 2020;6:129–132. doi: 10.1016/j.afos.2020.07.004. PubMed DOI PMC
Gläser S., Krüger S., Merkel M., Bramlage P., Herth F.J.F. Chronic Obstructive Pulmonary Disease and Diabetes Mellitus: A Systematic Review of the Literature. Respiration. 2015;89:253–264. doi: 10.1159/000369863. PubMed DOI
Mirza S., Clay R.D., Koslow M.A., Scanlon P.D. COPD Guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018;93:1488–1502. doi: 10.1016/j.mayocp.2018.05.026. PubMed DOI
Viniol C., Vogelmeier C.F. Exacerbations of COPD. Eur. Respir. Rev. 2018;27:170103. doi: 10.1183/16000617.0103-2017. PubMed DOI PMC
Hurst J.R., Vestbo J., Anzueto A., Locantore N., Müllerova H., Tal-Singer R., Miller B., Lomas D.A., Agusti A., Macnee W., et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. New Engl. J. Med. 2010;363:1128–1138. doi: 10.1056/NEJMoa0909883. PubMed DOI
Niewoehner D.E., Erbland M.L., Deupree R.H., Collins D., Gross N.J., Light R.W., Anderson P., Morgan N.A. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. Department of Veterans Affairs Cooperative Study Group. New Engl. J. Med. 1999;340:1941–1947. doi: 10.1056/NEJM199906243402502. PubMed DOI
Walters J.A., Tan D.J., White C.J., Gibson P.G., Wood-Baker R., Walters E.H. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2014;9:Cd001288. doi: 10.1002/14651858.CD001288.pub4. PubMed DOI PMC
Ernst P., Coulombe J., Brassard P., Suissa S. The Risk of Sepsis with Inhaled and Oral Corticosteroids in Patients with COPD. Copd. 2017;14:137–142. doi: 10.1080/15412555.2016.1238450. PubMed DOI
Hattiholi J., Gaude G.S. Bone mineral density among elderly patients with chronic obstructive pulmonary disease patients in India. Niger. Med. J. J. Niger. Med. Assoc. 2013;54:295–301. doi: 10.4103/0300-1652.122329. PubMed DOI PMC
McEvoy C.E., Ensrud K.E., Bender E., Genant H.K., Yu W., Griffith J.M., Niewoehner D.E. Association between corticosteroid use and vertebral fractures in older men with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998;157:704–709. doi: 10.1164/ajrccm.157.3.9703080. PubMed DOI
Zhou W.C., Qu J., Xie S.Y., Sun Y., Yao H.W. Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. Oxidative Med. Cell. Longev. 2021;2021:5188306. doi: 10.1155/2021/5188306. PubMed DOI PMC
Walters J.A., Tan D.J., White C.J., Wood-Baker R. Different durations of corticosteroid therapy for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2018;3:Cd006897. doi: 10.1002/14651858.CD006897.pub4. PubMed DOI PMC
Cavaillès A., Brinchault-Rabin G., Dixmier A., Goupil F., Gut-Gobert C., Marchand-Adam S., Meurice J.C., Morel H., Person-Tacnet C., Leroyer C., et al. Comorbidities of COPD. Eur. Respir. Rev. 2013;22:454–475. doi: 10.1183/09059180.00008612. PubMed DOI PMC
Fabbri L.M., Rabe K.F. From COPD to chronic systemic inflammatory syndrome? Lancet. 2007;370:797–799. doi: 10.1016/S0140-6736(07)61383-X. PubMed DOI
Vitenberga Z., Pilmane M., Babjoniševa A. The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways. Pathol. Res. Pr. 2019;215:97–105. doi: 10.1016/j.prp.2018.10.029. PubMed DOI
Gan W.Q. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax. 2004;59:574–580. doi: 10.1136/thx.2003.019588. PubMed DOI PMC
Braun T., Schett G. Pathways for bone loss in inflammatory disease. Curr. Osteoporos. Rep. 2012;10:101–108. doi: 10.1007/s11914-012-0104-5. PubMed DOI
Lacativa P.G., Farias M.L. Osteoporosis and inflammation. Arq. Bras. Endocrinol. Metab. 2010;54:123–132. doi: 10.1590/S0004-27302010000200007. PubMed DOI
Marzetti E., Calvani R., Cesari M., Buford T.W., Lorenzi M., Behnke B.J., Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Biol. 2013;45:2288–2301. doi: 10.1016/j.biocel.2013.06.024. PubMed DOI PMC
Dhillon R.J., Hasni S. Pathogenesis and Management of Sarcopenia. Clin. Geriatr. Med. 2017;33:17–26. doi: 10.1016/j.cger.2016.08.002. PubMed DOI PMC
Tournadre A., Vial G., Capel F., Soubrier M., Boirie Y. Sarcopenia. Jt. Bone Spine. 2019;86:309–314. doi: 10.1016/j.jbspin.2018.08.001. PubMed DOI
Ferrillo M., Curci C., Roccuzzo A., Migliario M., Invernizzi M., de Sire A. Reliability of cervical vertebral maturation compared to hand-wrist for skeletal maturation assessment in growing subjects: A systematic review. J. Back Musculoskelet. Rehabil. 2021;34:925–936. doi: 10.3233/BMR-210003. PubMed DOI
Pitta F., Troosters T., Probst V.S., Spruit M.A., Decramer M., Gosselink R. Physical activity and hospitalization for exacerbation of COPD. Chest. 2006;129:536–544. doi: 10.1378/chest.129.3.536. PubMed DOI
Li Y., Gao H., Zhao L., Wang J. Osteoporosis in COPD patients: Risk factors and pulmonary rehabilitation. Clin. Respir. J. 2022;16:487–496. doi: 10.1111/crj.13514. PubMed DOI PMC
Ma K., Huang F., Qiao R., Miao L. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front. Physiol. 2022;13:850964. doi: 10.3389/fphys.2022.850964. PubMed DOI PMC
Spruit M.A., Pitta F., McAuley E., ZuWallack R.L., Nici L. Pulmonary Rehabilitation and Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2015;192:924–933. doi: 10.1164/rccm.201505-0929CI. PubMed DOI
Frost H.M. From Wolff’s law to the Utah paradigm: Insights about bone physiology and its clinical applications. Anat. Rec. Off. Publ. Am. Assoc. Anat. 2001;262:398–419. doi: 10.1002/ar.1049. PubMed DOI
Brotto M., Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone. 2015;80:109–114. doi: 10.1016/j.bone.2015.02.010. PubMed DOI PMC
Isaacson J., Brotto M. Physiology of Mechanotransduction: How Do Muscle and Bone "Talk" to One Another? Clin. Rev. Bone Miner. Metab. 2014;12:77–85. doi: 10.1007/s12018-013-9152-3. PubMed DOI PMC
Jones S.E., Maddocks M., Kon S.S., Canavan J.L., Nolan C.M., Clark A.L., Polkey M.I., Man W.D. Sarcopenia in COPD: Prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70:213–218. doi: 10.1136/thoraxjnl-2014-206440. PubMed DOI
Yuan Y., Chen X., Zhang L., Wu J., Guo J., Zou D., Chen B., Sun Z., Shen C., Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog. Biophys. Mol. Biol. 2016;122:122–130. doi: 10.1016/j.pbiomolbio.2015.11.005. PubMed DOI
Hjorth M., Pourteymour S., Görgens S.W., Langleite T.M., Lee S., Holen T., Gulseth H.L., Birkeland K.I., Jensen J., Drevon C.A., et al. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells. Acta Physiol. 2016;217:45–60. doi: 10.1111/apha.12631. PubMed DOI
Troosters T., Probst V.S., Crul T., Pitta F., Gayan-Ramirez G., Decramer M., Gosselink R. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010;181:1072–1077. doi: 10.1164/rccm.200908-1203OC. PubMed DOI
Reza M.M., Subramaniyam N., Sim C.M., Ge X., Sathiakumar D., McFarlane C., Sharma M., Kambadur R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun. 2017;8:1104. doi: 10.1038/s41467-017-01131-0. PubMed DOI PMC
Ijiri N., Kanazawa H., Asai K., Watanabe T., Hirata K. Irisin, a newly discovered myokine, is a novel biomarker associated with physical activity in patients with chronic obstructive pulmonary disease. Respirology. 2015;20:612–617. doi: 10.1111/resp.12513. PubMed DOI
Armamento-Villareal R., Aguirre L., Waters D.L., Napoli N., Qualls C., Villareal D.T. Effect of Aerobic or Resistance Exercise, or Both, on Bone Mineral Density and Bone Metabolism in Obese Older Adults While Dieting: A Randomized Controlled Trial. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2020;35:430–439. doi: 10.1002/jbmr.3905. PubMed DOI PMC
Bernardes S., Eckert I.C., Burgel C.F., Teixeira P.J.Z., Silva F.M. Increased energy and/or protein intake improves anthropometry and muscle strength in COPD patients: A systematic review with meta-analysis on randomized controlled clinical trials. Br. J. Nutr. 2022;13:1–55. doi: 10.1017/S0007114522000976. PubMed DOI
Dávalos-Yerovi V., Marco E., Sánchez-Rodríguez D., Duran X., Meza-Valderrama D., Rodríguez D.A., Muñoz E., Tejero-Sánchez M., Muns M.D., Guillén-Solà A., et al. Malnutrition According to GLIM Criteria Is Associated with Mortality and Hospitalizations in Rehabilitation Patients with Stable Chronic Obstructive Pulmonary Disease. Nutrients. 2021;13:369. doi: 10.3390/nu13020369. PubMed DOI PMC
Rawal G., Yadav S. Nutrition in chronic obstructive pulmonary disease: A review. J. Transl. Intern. Med. 2015;3:151–154. doi: 10.1515/jtim-2015-0021. PubMed DOI PMC
Mizuno S., Wakabayashi H., Wada F. Rehabilitation nutrition for individuals with frailty, disability, sarcopenic dysphagia, or sarcopenic respiratory disability. Curr. Opin Clin. Nutr. Metab Care. 2022;25:29–36. doi: 10.1097/MCO.0000000000000787. PubMed DOI PMC
Damanti S., Azzolino D., Roncaglione C., Arosio B., Rossi P., Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients. 2019;11:1991. doi: 10.3390/nu11091991. PubMed DOI PMC
Adly N.N., Abd-El-Gawad W.M., Abou-Hashem R.M. Relationship between malnutrition and different fall risk assessment tools in a geriatric in-patient unit. Aging Clin. Exp. Res. 2020;32:1279–1287. doi: 10.1007/s40520-019-01309-0. PubMed DOI
Lips P., van Schoor N.M. The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:585–591. doi: 10.1016/j.beem.2011.05.002. PubMed DOI
Kupisz-Urbańska M., Płudowski P., Marcinowska-Suchowierska E. Vitamin D Deficiency in Older Patients-Problems of Sarcopenia, Drug Interactions, Management in Deficiency. Nutrients. 2021;13:1247. doi: 10.3390/nu13041247. PubMed DOI PMC
Ahmad S., Arora S., Khan S., Mohsin M., Mohan A., Manda K., Syed M.A. Vitamin D and its therapeutic relevance in pulmonary diseases. J. Nutr. Biochem. 2021;90:108571. doi: 10.1016/j.jnutbio.2020.108571. PubMed DOI
Yang Q., Liang Q., Balakrishnan B., Belobrajdic D.P., Feng Q.J., Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients. 2020;12:381. doi: 10.3390/nu12020381. PubMed DOI PMC
Rizzoli R., Biver E. Are Probiotics the New Calcium and Vitamin D for Bone Health? Curr. Osteoporos. Rep. 2020;18:273–284. doi: 10.1007/s11914-020-00591-6. PubMed DOI
King P.T. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin. Transl. Med. 2015;4:26. doi: 10.1186/s40169-015-0068-z. PubMed DOI PMC
Shapiro S.D. End-stage chronic obstructive pulmonary disease: The cigarette is burned out but inflammation rages on. Am. J. Respir. Crit. Care Med. 2001;164:339–340. doi: 10.1164/ajrccm.164.3.2105072c. PubMed DOI
Wilson-Barnes S.L., Lanham-New S.A., Lambert H. Modifiable risk factors for bone health & fragility fractures. Best Pr. Res. Clin. Rheumatol. 2022;21:101758. doi: 10.1016/j.berh.2022.101758. PubMed DOI
Nicholson T., Scott A., Newton Ede M., Jones S.W. The impact of E-cigarette vaping and vapour constituents on bone health. J. Inflamm. 2021;18:16. doi: 10.1186/s12950-021-00283-7. PubMed DOI PMC
Al-Bashaireh A.M., Haddad L.G., Weaver M., Chengguo X., Kelly D.L., Yoon S. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. J. Osteoporos. 2018;2018:1–17. doi: 10.1155/2018/1206235. PubMed DOI PMC
Schwartz A., Bellissimo N. Nicotine and energy balance: A review examining the effect of nicotine on hormonal appetite regulation and energy expenditure. Appetite. 2021;164:105260. doi: 10.1016/j.appet.2021.105260. PubMed DOI
Rom O., Kaisari S., Aizenbud D., Reznick A.Z. Sarcopenia and smoking: A possible cellular model of cigarette smoke effects on muscle protein breakdown. Ann. New York Acad. Sci. 2012;1259:47–53. doi: 10.1111/j.1749-6632.2012.06532.x. PubMed DOI
Kaluza J., Harris H.R., Linden A., Wolk A. Alcohol Consumption and Risk of Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study of Men. Am. J. Epidemiol. 2019;188:907–916. doi: 10.1093/aje/kwz020. PubMed DOI
Anam A.K., Insogna K. Update on Osteoporosis Screening and Management. Med. Clin. North Am. 2021;105:1117–1134. doi: 10.1016/j.mcna.2021.05.016. PubMed DOI
Curtis E., Litwic A., Cooper C., Dennison E. Determinants of Muscle and Bone Aging. J. Cell. Physiol. 2015;230:2618–2625. doi: 10.1002/jcp.25001. PubMed DOI PMC
O’Keeffe M., Kelly M., O’Herlihy E., O’Toole P.W., Kearney P.M., Timmons S., O’Shea E., Stanton C., Hickson M., Rolland Y., et al. Potentially modifiable determinants of malnutrition in older adults: A systematic review. Clin. Nutr. 2019;38:2477–2498. doi: 10.1016/j.clnu.2018.12.007. PubMed DOI
Pohl K., Moodley P., Dhanda A.D. Alcohol’s Impact on the Gut and Liver. Nutrients. 2021;13:3170. doi: 10.3390/nu13093170. PubMed DOI PMC
Steffl M., Bohannon R.W., Petr M., Kohlikova E., Holmerova I. Alcohol consumption as a risk factor for sarcopenia—A meta-analysis. BMC Geriatr. 2016;16:99. doi: 10.1186/s12877-016-0270-x. PubMed DOI PMC
Prokopidis K., Witard O.C. Understanding the role of smoking and chronic excess alcohol consumption on reduced caloric intake and the development of sarcopenia. Nutr. Res. Rev. 2021;24:1–10. doi: 10.1017/S0954422421000135. PubMed DOI
Roubenoff R. Physical activity, inflammation, and muscle loss. Nutr. Rev. 2007;65:S208–S212. doi: 10.1301/nr.2007.dec.S208-S212. PubMed DOI
Sritharan S.S., Østergaard E.B., Callesen J., Elkjaer M., Sand L., Hilberg O., Skaarup S.H., Løkke A. Barriers toward Physical Activity in COPD: A Quantitative Cross-Sectional, Questionnaire-Based Study. Copd. 2021;18:272–280. doi: 10.1080/15412555.2021.1922371. PubMed DOI
Aldhahir A.M., Rajeh A.M.A., Aldabayan Y.S., Drammeh S., Subbu V., Alqahtani J.S., Hurst J.R., Mandal S. Nutritional supplementation during pulmonary rehabilitation in COPD: A systematic review. Chronic Respir. Dis. 2020;17:147997312090495. doi: 10.1177/1479973120904953. PubMed DOI PMC
Compston J. Glucocorticoid-induced osteoporosis: An update. Endocrine. 2018;61:7–16. doi: 10.1007/s12020-018-1588-2. PubMed DOI PMC
McCarthy B., Casey D., Devane D., Murphy K., Murphy E., Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2015;11:Cd003793. doi: 10.1002/14651858.CD003793.pub3. PubMed DOI PMC
Soril L.J.J., Damant R.W., Lam G.Y., Smith M.P., Weatherald J., Bourbeau J., Hernandez P., Stickland M.K. The effectiveness of pulmonary rehabilitation for Post-COVID symptoms: A rapid review of the literature. Respir. Med. 2022;195:106782. doi: 10.1016/j.rmed.2022.106782. PubMed DOI PMC
Vestergaard P., Mosekilde L. Fracture risk associated with smoking: A meta-analysis. J. Intern. Med. 2003;254:572–583. doi: 10.1111/j.1365-2796.2003.01232.x. PubMed DOI
Lage V., Silva G., Lacerda A., Paula F., Lima L., Santos J., Almeida H., Pinto A., Figueiredo P., Costa H. Functional tests associated with sarcopenia in moderate chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2021;15:569–576. doi: 10.1080/17476348.2021.1850276. PubMed DOI
Pulmonary rehabilitation for patients with chronic pulmonary disease (COPD): An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2012;12:1–75. PubMed PMC
de Sire A., Andrenelli E., Negrini F., Lazzarini S.G., Patrini M., Ceravolo M.G. Rehabilitation and COVID-19: The Cochrane Rehabilitation 2020 rapid living systematic review. Eur. J. Phys. Rehabil. Med. 2021;56:1–13. doi: 10.23736/s1973-9087.20.06614-9. PubMed DOI
de Sire A., Andrenelli E., Negrini F., Patrini M., Lazzarini S.G., Ceravolo M.G. Rehabilitation and COVID-19: A rapid living systematic review by Cochrane Rehabilitation Field updated as of December 31st, 2020 and synthesis of the scientific literature of 2020. Eur. J. Phys. Rehabil. Med. 2021;57:181–188. doi: 10.23736/S1973-9087.21.06870-2. PubMed DOI
Seid A.A., Aychiluhm S.B., Mohammed A.A. Effectiveness and feasibility of telerehabilitation in patients with COVID-19: A systematic review and meta-analysis. BMJ Open. 2022;12:e063961. doi: 10.1136/bmjopen-2022-063961. PubMed DOI PMC
Md Fadzil N.H., Shahar S., Rajikan R., Singh D.K.A., Mat Ludin A.F., Subramaniam P., Ibrahim N., Vanoh D., Mohamad Ali N. A Scoping Review for Usage of Telerehabilitation among Older Adults with Mild Cognitive Impairment or Cognitive Frailty. Int. J. Env. Res. Public Health. 2022;19:4000. doi: 10.3390/ijerph19074000. PubMed DOI PMC
Leochico C.F.D., Perez M.F.J., Mojica J.A.P., Ignacio S.D. Telerehabilitation Readiness, Knowledge, and Acceptance of Future Physiatrists in the Philippines: An Online Survey During the COVID-19 Pandemic. Front. Rehabil. Sci. 2022;3:921013. doi: 10.3389/fresc.2022.921013. PubMed DOI PMC
Tsutsui M., Gerayeli F., Sin D.D. Pulmonary Rehabilitation in a Post-COVID-19 World: Telerehabilitation as a New Standard in Patients with COPD. Int. J. Chron. Obs. Pulmon. Dis. 2021;16:379–391. doi: 10.2147/COPD.S263031. PubMed DOI PMC
Rutkowski S. Management Challenges in Chronic Obstructive Pulmonary Disease in the COVID-19 Pandemic: Telehealth and Virtual Reality. J. Clin. Med. 2021;10:1261. doi: 10.3390/jcm10061261. PubMed DOI PMC
Spitzer K.A., Stefan M.S., Priya A., Pack Q.R., Pekow P.S., Lagu T., Pinto-Plata V.M., ZuWallack R.L., Lindenauer P.K. Participation in Pulmonary Rehabilitation after Hospitalization for Chronic Obstructive Pulmonary Disease among Medicare Beneficiaries. Ann. Am. Thorac. Soc. 2019;16:99–106. doi: 10.1513/AnnalsATS.201805-332OC. PubMed DOI PMC
Elbaz S., Cinalioglu K., Sekhon K., Gruber J., Rigas C., Bodenstein K., Naghi K., Lavin P., Greenway K.T., Vahia I., et al. A Systematic Review of Telemedicine for Older Adults With Dementia During COVID-19: An Alternative to In-person Health Services? Front. Neurol. 2021;12:761965. doi: 10.3389/fneur.2021.761965. PubMed DOI PMC
Golmohammadi K., Jacobs P., Sin D.D. Economic evaluation of a community-based pulmonary rehabilitation program for chronic obstructive pulmonary disease. Lung. 2004;182:187–196. doi: 10.1007/s00408-004-3110-2. PubMed DOI
Ontan M.S., Dokuzlar O., Ates Bulut E., Soysal P., Isik A.T. The relationship between osteoporosis and sarcopenia, according to EWGSOP-2 criteria, in outpatient elderly. J. Bone Miner. Metab. 2021;39:684–692. doi: 10.1007/s00774-021-01213-6. PubMed DOI