Osteosarcopenia in Patients with Chronic Obstructive Pulmonary Diseases: Which Pathophysiologic Implications for Rehabilitation?

. 2022 Nov 02 ; 19 (21) : . [epub] 20221102

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36361194

Chronic obstructive pulmonary disease (COPD) is a burdensome condition affecting a growing number of people worldwide, frequently related to major comorbidities and functional impairment. In these patients, several factors might have a role in promoting both bone and muscle loss, including systemic inflammation, corticosteroid therapies, sedentary behaviours, deconditioning, malnutrition, smoking habits, and alcohol consumption. On the other hand, bone and muscle tissues share several linkages from functional, embryological, and biochemical points of view. Osteosarcopenia has been recently defined by the coexistence of osteoporosis and sarcopenia, but the precise mechanisms underpinning osteosarcopenia in patients with COPD are still unknown. In this scenario, a deeper understanding of the molecular basis of osteosarcopenia might guide clinicians in a personalized approach integrating skeletal muscle health with the pulmonary rehabilitation framework in COPD. Taken together, our results summarized the currently available evidence about the multilevel interactions between osteosarcopenia and COPD to pave the way for a comprehensive approach targeting the most common risk factors of these pathological conditions. Further studies are needed to clarify the role of modern clinical strategies and telemedicine solutions to optimize healthcare delivery in patients with COPD, including osteopenia, osteoporosis, and sarcopenia screening in these subjects.

Zobrazit více v PubMed

Global Initiative for Chronic Obstructive Lung Disease (GOLD) Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease: 2022 Report. [(accessed on 28 August 2022)]. Available online: www.goldcopd.org.

Sepúlveda-Loyola W., Osadnik C., Phu S., Morita A.A., Duque G., Probst V.S. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle. 2020;11:1164–1176. doi: 10.1002/jcsm.12600. PubMed DOI PMC

Cecins E., Cavalheri V., Taaffe D.R., Hill A.M., Hug S., Hill K. Prevalence of suspected poor bone health in people with chronic obstructive pulmonary disease—A cross-sectional exploratory study. Chronic Respir. Dis. 2022;19:14799731221120429. doi: 10.1177/14799731221120429. PubMed DOI PMC

Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169. PubMed DOI PMC

Kim S.H., Shin M.J., Shin Y.B., Kim K.U. Sarcopenia Associated with Chronic Obstructive Pulmonary Disease. J. Bone Metab. 2019;26:65. doi: 10.11005/jbm.2019.26.2.65. PubMed DOI PMC

Sözen T., Özışık L., Başaran N. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017;4:46–56. doi: 10.5152/eurjrheum.2016.048. PubMed DOI PMC

de Sire A., Lippi L., Aprile V., Calafiore D., Folli A., D’Abrosca F., Moalli S., Lucchi M., Ammendolia A., Invernizzi M. Pharmacological, Nutritional, and Rehabilitative Interventions to Improve the Complex Management of Osteoporosis in Patients with Chronic Obstructive Pulmonary Disease: A Narrative Review. J. Pers. Med. 2022;12:1626. doi: 10.3390/jpm12101626. PubMed DOI PMC

Mukund K., Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020;12:e1462. doi: 10.1002/wsbm.1462. PubMed DOI PMC

Brzeszczyńska J., Brzeszczyński F., Hamilton D.F., McGregor R., Simpson A.H.R. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Jt. Res. 2020;9:798–807. doi: 10.1302/2046-3758.911.BJR-2020-0178.R1. PubMed DOI PMC

Spruit M.A., Singh S.J., Garvey C., ZuWallack R., Nici L., Rochester C., Hill K., Holland A.E., Lareau S.C., Man W.D., et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013;188:e13–e64. doi: 10.1164/rccm.201309-1634ST. PubMed DOI

Adeloye D., Song P., Zhu Y., Campbell H., Sheikh A., Rudan I. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: A systematic review and modelling analysis. Lancet. Respir. Med. 2022;10:447–458. doi: 10.1016/S2213-2600(21)00511-7. PubMed DOI PMC

[(accessed on 26 August 2022)]. Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease--(copd)

Lippi L., D’Abrosca F., Folli A., Dal Molin A., Moalli S., Maconi A., Ammendolia A., de Sire A., Invernizzi M. Closing the Gap between Inpatient and Outpatient Settings: Integrating Pulmonary Rehabilitation and Technological Advances in the Comprehensive Management of Frail Patients. Int. J. Environ. Res. Public Health. 2022;19:9150. doi: 10.3390/ijerph19159150. PubMed DOI PMC

Marengoni A., Vetrano D.L., Manes-Gravina E., Bernabei R., Onder G., Palmer K. The Relationship Between COPD and Frailty: A Systematic Review and Meta-Analysis of Observational Studies. Chest. 2018;154:21–40. doi: 10.1016/j.chest.2018.02.014. PubMed DOI

Morley J.E., Vellas B., van Kan G.A., Anker S.D., Bauer J.M., Bernabei R., Cesari M., Chumlea W.C., Doehner W., Evans J., et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013;14:392–397. doi: 10.1016/j.jamda.2013.03.022. PubMed DOI PMC

Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., Seeman T., Tracy R., Kop W.J., Burke G., et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001;56:M146–M156. doi: 10.1093/gerona/56.3.M146. PubMed DOI

Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034. PubMed DOI PMC

Gao J., Deng M., Li Y., Yin Y., Zhou X., Zhang Q., Hou G. Resistin as a Systemic Inflammation-Related Biomarker for Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease. Front. Nutr. 2022;9:921399. doi: 10.3389/fnut.2022.921399. PubMed DOI PMC

Yeung S.S.Y., Reijnierse E.M., Pham V.K., Trappenburg M.C., Lim W.K., Meskers C.G.M., Maier A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle. 2019;10:485–500. doi: 10.1002/jcsm.12411. PubMed DOI PMC

Clynes M.A., Gregson C.L., Bruyère O., Cooper C., Dennison E.M. Osteosarcopenia: Where osteoporosis and sarcopenia collide. Rheumatology. 2021;60:529–537. doi: 10.1093/rheumatology/keaa755. PubMed DOI

de Sire A., Ferrillo M., Lippi L., Agostini F., de Sire R., Ferrara P.E., Raguso G., Riso S., Roccuzzo A., Ronconi G., et al. Sarcopenic Dysphagia, Malnutrition, and Oral Frailty in Elderly: A Comprehensive Review. Nutrients. 2022;14:982. doi: 10.3390/nu14050982. PubMed DOI PMC

Lippi L., de Sire A., Mezian K., Curci C., Perrero L., Turco A., Andaloro S., Ammendolia A., Fusco N., Invernizzi M. Impact of exercise training on muscle mitochondria modifications in older adults: A systematic review of randomized controlled trials. Aging Clin. Exp. Res. 2022;34:1495–1510. doi: 10.1007/s40520-021-02073-w. PubMed DOI

Lippi L., Uberti F., Folli A., Turco A., Curci C., d’Abrosca F., de Sire A., Invernizzi M. Impact of nutraceuticals and dietary supplements on mitochondria modifications in healthy aging: A systematic review of randomized controlled trials. Aging Clin. Exp. Res. 2022;3 doi: 10.1007/s40520-022-02203-y. PubMed DOI

Peñailillo L., Valladares-Ide D., Jannas-Velas S., Flores-Opazo M., Jalón M., Mendoza L., Nuñez I., Diaz-Patiño O. Effects of eccentric, concentric and eccentric/concentric training on muscle function and mass, functional performance, cardiometabolic health, quality of life and molecular adaptations of skeletal muscle in COPD patients: A multicentre randomised trial. BMC Pulm. Med. 2022;22:278. doi: 10.1186/s12890-022-02061-4. PubMed DOI PMC

Ferrucci L., Baroni M., Ranchelli A., Lauretani F., Maggio M., Mecocci P., Ruggiero C. Interaction between bone and muscle in older persons with mobility limitations. Curr. Pharm. Des. 2014;20:3178–3197. doi: 10.2174/13816128113196660690. PubMed DOI PMC

Chen Y.W., Ramsook A.H., Coxson H.O., Bon J., Reid W.D. Prevalence and Risk Factors for Osteoporosis in Individuals With COPD: A Systematic Review and Meta-analysis. Chest. 2019;156:1092–1110. doi: 10.1016/j.chest.2019.06.036. PubMed DOI

Felsenthal N., Zelzer E. Mechanical regulation of musculoskeletal system development. Development. 2017;144:4271–4283. doi: 10.1242/dev.151266. PubMed DOI PMC

Huang A.H. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev. Biol. 2017;429:420–428. doi: 10.1016/j.ydbio.2017.03.028. PubMed DOI PMC

Tsukamoto M., Mori T., Nakamura E., Okada Y., Fukuda H., Yamanaka Y., Sabanai K., Wang K.Y., Hanagiri T., Kuboi S., et al. Chronic obstructive pulmonary disease severity in middle-aged and older men with osteoporosis associates with decreased bone formation. Osteoporos. Sarcopenia. 2020;6:179–184. doi: 10.1016/j.afos.2020.11.003. PubMed DOI PMC

Wang Z., Li W., Guo Q., Wang Y., Ma L., Zhang X. Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BioMed Res. Int. 2018;2018:1–27. doi: 10.1155/2018/6057589. PubMed DOI PMC

Zhang L., Sun Y. Muscle-Bone Crosstalk in Chronic Obstructive Pulmonary Disease. Front. Endocrinol. 2021;12:724911. doi: 10.3389/fendo.2021.724911. PubMed DOI PMC

Caramori G., Ruggeri P., Arpinelli F., Salvi L., Girbino G. Long-term use of inhaled glucocorticoids in patients with stable chronic obstructive pulmonary disease and risk of bone fractures: A narrative review of the literature. Int. J. Chron. Obs. Pulmon. Dis. 2019;14:1085–1097. doi: 10.2147/COPD.S190215. PubMed DOI PMC

Burckhardt P. Corticosteroids and bone: A review. Horm. Res. 1984;20:59–64. doi: 10.1159/000179975. PubMed DOI

Oray M., Abu Samra K., Ebrahimiadib N., Meese H., Foster C.S. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf. 2016;15:457–465. doi: 10.1517/14740338.2016.1140743. PubMed DOI

Schäcke H., Döcke W.D., Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002;96:23–43. doi: 10.1016/S0163-7258(02)00297-8. PubMed DOI

Yin L., Li N., Jia W., Wang N., Liang M., Yang X., Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res. 2021;172:105807. doi: 10.1016/j.phrs.2021.105807. PubMed DOI

Bonaldo P., Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 2013;6:25–39. doi: 10.1242/dmm.010389. PubMed DOI PMC

Inoue D., Watanabe R., Okazaki R. COPD and osteoporosis: Links, risks, and treatment challenges. Int. J. Chron. Obs. Pulmon. Dis. 2016;11:637–648. doi: 10.2147/COPD.S79638. PubMed DOI PMC

Van Staa T.P., Leufkens H.G., Abenhaim L., Zhang B., Cooper C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 2000;15:993–1000. doi: 10.1359/jbmr.2000.15.6.993. PubMed DOI

Kobza A.O., Herman D., Papaioannou A., Lau A.N., Adachi J.D. Understanding and managing corticosteroid-induced osteoporosis. Open Access Rheumatol. Res. Rev. 2021;13:177. doi: 10.2147/OARRR.S282606. PubMed DOI PMC

Chalitsios C.V., Shaw D.E., McKeever T.M. Risk of osteoporosis and fragility fractures in asthma due to oral and inhaled corticosteroids: Two population-based nested case-control studies. Thorax. 2021;76:21–28. doi: 10.1136/thoraxjnl-2020-215664. PubMed DOI

Pereira R.M.R., Perez M.O., Paula A.P., Moreira C., Castro C.H.M., Zerbini C.A.F., Domiciano D.S., de Azevedo E., Mendonca L.M.C., Shinzato M.M., et al. Guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis: An update of Brazilian Society of Rheumatology (2020) Arch. Osteoporos. 2021;16:49. doi: 10.1007/s11657-021-00902-z. PubMed DOI

Loke Y.K., Cavallazzi R., Singh S. Risk of fractures with inhaled corticosteroids in COPD: Systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66:699–708. doi: 10.1136/thx.2011.160028. PubMed DOI

Weatherall M., James K., Clay J., Perrin K., Masoli M., Wijesinghe M., Beasley R. Dose-response relationship for risk of non-vertebral fracture with inhaled corticosteroids. Clin. Exp. Allergy. 2008;38:1451–1458. doi: 10.1111/j.1365-2222.2008.03029.x. PubMed DOI

Yang I.A., Clarke M.S., Sim E.H., Fong K.M. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012;2012:Cd002991. doi: 10.1002/14651858.CD002991.pub3. PubMed DOI PMC

Chua J.R., Tee M.L. Association of sarcopenia with osteoporosis in patients with chronic obstructive pulmonary disease. Osteoporos. Sarcopenia. 2020;6:129–132. doi: 10.1016/j.afos.2020.07.004. PubMed DOI PMC

Gläser S., Krüger S., Merkel M., Bramlage P., Herth F.J.F. Chronic Obstructive Pulmonary Disease and Diabetes Mellitus: A Systematic Review of the Literature. Respiration. 2015;89:253–264. doi: 10.1159/000369863. PubMed DOI

Mirza S., Clay R.D., Koslow M.A., Scanlon P.D. COPD Guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018;93:1488–1502. doi: 10.1016/j.mayocp.2018.05.026. PubMed DOI

Viniol C., Vogelmeier C.F. Exacerbations of COPD. Eur. Respir. Rev. 2018;27:170103. doi: 10.1183/16000617.0103-2017. PubMed DOI PMC

Hurst J.R., Vestbo J., Anzueto A., Locantore N., Müllerova H., Tal-Singer R., Miller B., Lomas D.A., Agusti A., Macnee W., et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. New Engl. J. Med. 2010;363:1128–1138. doi: 10.1056/NEJMoa0909883. PubMed DOI

Niewoehner D.E., Erbland M.L., Deupree R.H., Collins D., Gross N.J., Light R.W., Anderson P., Morgan N.A. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. Department of Veterans Affairs Cooperative Study Group. New Engl. J. Med. 1999;340:1941–1947. doi: 10.1056/NEJM199906243402502. PubMed DOI

Walters J.A., Tan D.J., White C.J., Gibson P.G., Wood-Baker R., Walters E.H. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2014;9:Cd001288. doi: 10.1002/14651858.CD001288.pub4. PubMed DOI PMC

Ernst P., Coulombe J., Brassard P., Suissa S. The Risk of Sepsis with Inhaled and Oral Corticosteroids in Patients with COPD. Copd. 2017;14:137–142. doi: 10.1080/15412555.2016.1238450. PubMed DOI

Hattiholi J., Gaude G.S. Bone mineral density among elderly patients with chronic obstructive pulmonary disease patients in India. Niger. Med. J. J. Niger. Med. Assoc. 2013;54:295–301. doi: 10.4103/0300-1652.122329. PubMed DOI PMC

McEvoy C.E., Ensrud K.E., Bender E., Genant H.K., Yu W., Griffith J.M., Niewoehner D.E. Association between corticosteroid use and vertebral fractures in older men with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998;157:704–709. doi: 10.1164/ajrccm.157.3.9703080. PubMed DOI

Zhou W.C., Qu J., Xie S.Y., Sun Y., Yao H.W. Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. Oxidative Med. Cell. Longev. 2021;2021:5188306. doi: 10.1155/2021/5188306. PubMed DOI PMC

Walters J.A., Tan D.J., White C.J., Wood-Baker R. Different durations of corticosteroid therapy for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2018;3:Cd006897. doi: 10.1002/14651858.CD006897.pub4. PubMed DOI PMC

Cavaillès A., Brinchault-Rabin G., Dixmier A., Goupil F., Gut-Gobert C., Marchand-Adam S., Meurice J.C., Morel H., Person-Tacnet C., Leroyer C., et al. Comorbidities of COPD. Eur. Respir. Rev. 2013;22:454–475. doi: 10.1183/09059180.00008612. PubMed DOI PMC

Fabbri L.M., Rabe K.F. From COPD to chronic systemic inflammatory syndrome? Lancet. 2007;370:797–799. doi: 10.1016/S0140-6736(07)61383-X. PubMed DOI

Vitenberga Z., Pilmane M., Babjoniševa A. The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways. Pathol. Res. Pr. 2019;215:97–105. doi: 10.1016/j.prp.2018.10.029. PubMed DOI

Gan W.Q. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax. 2004;59:574–580. doi: 10.1136/thx.2003.019588. PubMed DOI PMC

Braun T., Schett G. Pathways for bone loss in inflammatory disease. Curr. Osteoporos. Rep. 2012;10:101–108. doi: 10.1007/s11914-012-0104-5. PubMed DOI

Lacativa P.G., Farias M.L. Osteoporosis and inflammation. Arq. Bras. Endocrinol. Metab. 2010;54:123–132. doi: 10.1590/S0004-27302010000200007. PubMed DOI

Marzetti E., Calvani R., Cesari M., Buford T.W., Lorenzi M., Behnke B.J., Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Biol. 2013;45:2288–2301. doi: 10.1016/j.biocel.2013.06.024. PubMed DOI PMC

Dhillon R.J., Hasni S. Pathogenesis and Management of Sarcopenia. Clin. Geriatr. Med. 2017;33:17–26. doi: 10.1016/j.cger.2016.08.002. PubMed DOI PMC

Tournadre A., Vial G., Capel F., Soubrier M., Boirie Y. Sarcopenia. Jt. Bone Spine. 2019;86:309–314. doi: 10.1016/j.jbspin.2018.08.001. PubMed DOI

Ferrillo M., Curci C., Roccuzzo A., Migliario M., Invernizzi M., de Sire A. Reliability of cervical vertebral maturation compared to hand-wrist for skeletal maturation assessment in growing subjects: A systematic review. J. Back Musculoskelet. Rehabil. 2021;34:925–936. doi: 10.3233/BMR-210003. PubMed DOI

Pitta F., Troosters T., Probst V.S., Spruit M.A., Decramer M., Gosselink R. Physical activity and hospitalization for exacerbation of COPD. Chest. 2006;129:536–544. doi: 10.1378/chest.129.3.536. PubMed DOI

Li Y., Gao H., Zhao L., Wang J. Osteoporosis in COPD patients: Risk factors and pulmonary rehabilitation. Clin. Respir. J. 2022;16:487–496. doi: 10.1111/crj.13514. PubMed DOI PMC

Ma K., Huang F., Qiao R., Miao L. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front. Physiol. 2022;13:850964. doi: 10.3389/fphys.2022.850964. PubMed DOI PMC

Spruit M.A., Pitta F., McAuley E., ZuWallack R.L., Nici L. Pulmonary Rehabilitation and Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2015;192:924–933. doi: 10.1164/rccm.201505-0929CI. PubMed DOI

Frost H.M. From Wolff’s law to the Utah paradigm: Insights about bone physiology and its clinical applications. Anat. Rec. Off. Publ. Am. Assoc. Anat. 2001;262:398–419. doi: 10.1002/ar.1049. PubMed DOI

Brotto M., Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone. 2015;80:109–114. doi: 10.1016/j.bone.2015.02.010. PubMed DOI PMC

Isaacson J., Brotto M. Physiology of Mechanotransduction: How Do Muscle and Bone "Talk" to One Another? Clin. Rev. Bone Miner. Metab. 2014;12:77–85. doi: 10.1007/s12018-013-9152-3. PubMed DOI PMC

Jones S.E., Maddocks M., Kon S.S., Canavan J.L., Nolan C.M., Clark A.L., Polkey M.I., Man W.D. Sarcopenia in COPD: Prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70:213–218. doi: 10.1136/thoraxjnl-2014-206440. PubMed DOI

Yuan Y., Chen X., Zhang L., Wu J., Guo J., Zou D., Chen B., Sun Z., Shen C., Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog. Biophys. Mol. Biol. 2016;122:122–130. doi: 10.1016/j.pbiomolbio.2015.11.005. PubMed DOI

Hjorth M., Pourteymour S., Görgens S.W., Langleite T.M., Lee S., Holen T., Gulseth H.L., Birkeland K.I., Jensen J., Drevon C.A., et al. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells. Acta Physiol. 2016;217:45–60. doi: 10.1111/apha.12631. PubMed DOI

Troosters T., Probst V.S., Crul T., Pitta F., Gayan-Ramirez G., Decramer M., Gosselink R. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010;181:1072–1077. doi: 10.1164/rccm.200908-1203OC. PubMed DOI

Reza M.M., Subramaniyam N., Sim C.M., Ge X., Sathiakumar D., McFarlane C., Sharma M., Kambadur R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun. 2017;8:1104. doi: 10.1038/s41467-017-01131-0. PubMed DOI PMC

Ijiri N., Kanazawa H., Asai K., Watanabe T., Hirata K. Irisin, a newly discovered myokine, is a novel biomarker associated with physical activity in patients with chronic obstructive pulmonary disease. Respirology. 2015;20:612–617. doi: 10.1111/resp.12513. PubMed DOI

Armamento-Villareal R., Aguirre L., Waters D.L., Napoli N., Qualls C., Villareal D.T. Effect of Aerobic or Resistance Exercise, or Both, on Bone Mineral Density and Bone Metabolism in Obese Older Adults While Dieting: A Randomized Controlled Trial. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2020;35:430–439. doi: 10.1002/jbmr.3905. PubMed DOI PMC

Bernardes S., Eckert I.C., Burgel C.F., Teixeira P.J.Z., Silva F.M. Increased energy and/or protein intake improves anthropometry and muscle strength in COPD patients: A systematic review with meta-analysis on randomized controlled clinical trials. Br. J. Nutr. 2022;13:1–55. doi: 10.1017/S0007114522000976. PubMed DOI

Dávalos-Yerovi V., Marco E., Sánchez-Rodríguez D., Duran X., Meza-Valderrama D., Rodríguez D.A., Muñoz E., Tejero-Sánchez M., Muns M.D., Guillén-Solà A., et al. Malnutrition According to GLIM Criteria Is Associated with Mortality and Hospitalizations in Rehabilitation Patients with Stable Chronic Obstructive Pulmonary Disease. Nutrients. 2021;13:369. doi: 10.3390/nu13020369. PubMed DOI PMC

Rawal G., Yadav S. Nutrition in chronic obstructive pulmonary disease: A review. J. Transl. Intern. Med. 2015;3:151–154. doi: 10.1515/jtim-2015-0021. PubMed DOI PMC

Mizuno S., Wakabayashi H., Wada F. Rehabilitation nutrition for individuals with frailty, disability, sarcopenic dysphagia, or sarcopenic respiratory disability. Curr. Opin Clin. Nutr. Metab Care. 2022;25:29–36. doi: 10.1097/MCO.0000000000000787. PubMed DOI PMC

Damanti S., Azzolino D., Roncaglione C., Arosio B., Rossi P., Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients. 2019;11:1991. doi: 10.3390/nu11091991. PubMed DOI PMC

Adly N.N., Abd-El-Gawad W.M., Abou-Hashem R.M. Relationship between malnutrition and different fall risk assessment tools in a geriatric in-patient unit. Aging Clin. Exp. Res. 2020;32:1279–1287. doi: 10.1007/s40520-019-01309-0. PubMed DOI

Lips P., van Schoor N.M. The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011;25:585–591. doi: 10.1016/j.beem.2011.05.002. PubMed DOI

Kupisz-Urbańska M., Płudowski P., Marcinowska-Suchowierska E. Vitamin D Deficiency in Older Patients-Problems of Sarcopenia, Drug Interactions, Management in Deficiency. Nutrients. 2021;13:1247. doi: 10.3390/nu13041247. PubMed DOI PMC

Ahmad S., Arora S., Khan S., Mohsin M., Mohan A., Manda K., Syed M.A. Vitamin D and its therapeutic relevance in pulmonary diseases. J. Nutr. Biochem. 2021;90:108571. doi: 10.1016/j.jnutbio.2020.108571. PubMed DOI

Yang Q., Liang Q., Balakrishnan B., Belobrajdic D.P., Feng Q.J., Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients. 2020;12:381. doi: 10.3390/nu12020381. PubMed DOI PMC

Rizzoli R., Biver E. Are Probiotics the New Calcium and Vitamin D for Bone Health? Curr. Osteoporos. Rep. 2020;18:273–284. doi: 10.1007/s11914-020-00591-6. PubMed DOI

King P.T. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin. Transl. Med. 2015;4:26. doi: 10.1186/s40169-015-0068-z. PubMed DOI PMC

Shapiro S.D. End-stage chronic obstructive pulmonary disease: The cigarette is burned out but inflammation rages on. Am. J. Respir. Crit. Care Med. 2001;164:339–340. doi: 10.1164/ajrccm.164.3.2105072c. PubMed DOI

Wilson-Barnes S.L., Lanham-New S.A., Lambert H. Modifiable risk factors for bone health & fragility fractures. Best Pr. Res. Clin. Rheumatol. 2022;21:101758. doi: 10.1016/j.berh.2022.101758. PubMed DOI

Nicholson T., Scott A., Newton Ede M., Jones S.W. The impact of E-cigarette vaping and vapour constituents on bone health. J. Inflamm. 2021;18:16. doi: 10.1186/s12950-021-00283-7. PubMed DOI PMC

Al-Bashaireh A.M., Haddad L.G., Weaver M., Chengguo X., Kelly D.L., Yoon S. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. J. Osteoporos. 2018;2018:1–17. doi: 10.1155/2018/1206235. PubMed DOI PMC

Schwartz A., Bellissimo N. Nicotine and energy balance: A review examining the effect of nicotine on hormonal appetite regulation and energy expenditure. Appetite. 2021;164:105260. doi: 10.1016/j.appet.2021.105260. PubMed DOI

Rom O., Kaisari S., Aizenbud D., Reznick A.Z. Sarcopenia and smoking: A possible cellular model of cigarette smoke effects on muscle protein breakdown. Ann. New York Acad. Sci. 2012;1259:47–53. doi: 10.1111/j.1749-6632.2012.06532.x. PubMed DOI

Kaluza J., Harris H.R., Linden A., Wolk A. Alcohol Consumption and Risk of Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study of Men. Am. J. Epidemiol. 2019;188:907–916. doi: 10.1093/aje/kwz020. PubMed DOI

Anam A.K., Insogna K. Update on Osteoporosis Screening and Management. Med. Clin. North Am. 2021;105:1117–1134. doi: 10.1016/j.mcna.2021.05.016. PubMed DOI

Curtis E., Litwic A., Cooper C., Dennison E. Determinants of Muscle and Bone Aging. J. Cell. Physiol. 2015;230:2618–2625. doi: 10.1002/jcp.25001. PubMed DOI PMC

O’Keeffe M., Kelly M., O’Herlihy E., O’Toole P.W., Kearney P.M., Timmons S., O’Shea E., Stanton C., Hickson M., Rolland Y., et al. Potentially modifiable determinants of malnutrition in older adults: A systematic review. Clin. Nutr. 2019;38:2477–2498. doi: 10.1016/j.clnu.2018.12.007. PubMed DOI

Pohl K., Moodley P., Dhanda A.D. Alcohol’s Impact on the Gut and Liver. Nutrients. 2021;13:3170. doi: 10.3390/nu13093170. PubMed DOI PMC

Steffl M., Bohannon R.W., Petr M., Kohlikova E., Holmerova I. Alcohol consumption as a risk factor for sarcopenia—A meta-analysis. BMC Geriatr. 2016;16:99. doi: 10.1186/s12877-016-0270-x. PubMed DOI PMC

Prokopidis K., Witard O.C. Understanding the role of smoking and chronic excess alcohol consumption on reduced caloric intake and the development of sarcopenia. Nutr. Res. Rev. 2021;24:1–10. doi: 10.1017/S0954422421000135. PubMed DOI

Roubenoff R. Physical activity, inflammation, and muscle loss. Nutr. Rev. 2007;65:S208–S212. doi: 10.1301/nr.2007.dec.S208-S212. PubMed DOI

Sritharan S.S., Østergaard E.B., Callesen J., Elkjaer M., Sand L., Hilberg O., Skaarup S.H., Løkke A. Barriers toward Physical Activity in COPD: A Quantitative Cross-Sectional, Questionnaire-Based Study. Copd. 2021;18:272–280. doi: 10.1080/15412555.2021.1922371. PubMed DOI

Aldhahir A.M., Rajeh A.M.A., Aldabayan Y.S., Drammeh S., Subbu V., Alqahtani J.S., Hurst J.R., Mandal S. Nutritional supplementation during pulmonary rehabilitation in COPD: A systematic review. Chronic Respir. Dis. 2020;17:147997312090495. doi: 10.1177/1479973120904953. PubMed DOI PMC

Compston J. Glucocorticoid-induced osteoporosis: An update. Endocrine. 2018;61:7–16. doi: 10.1007/s12020-018-1588-2. PubMed DOI PMC

McCarthy B., Casey D., Devane D., Murphy K., Murphy E., Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2015;11:Cd003793. doi: 10.1002/14651858.CD003793.pub3. PubMed DOI PMC

Soril L.J.J., Damant R.W., Lam G.Y., Smith M.P., Weatherald J., Bourbeau J., Hernandez P., Stickland M.K. The effectiveness of pulmonary rehabilitation for Post-COVID symptoms: A rapid review of the literature. Respir. Med. 2022;195:106782. doi: 10.1016/j.rmed.2022.106782. PubMed DOI PMC

Vestergaard P., Mosekilde L. Fracture risk associated with smoking: A meta-analysis. J. Intern. Med. 2003;254:572–583. doi: 10.1111/j.1365-2796.2003.01232.x. PubMed DOI

Lage V., Silva G., Lacerda A., Paula F., Lima L., Santos J., Almeida H., Pinto A., Figueiredo P., Costa H. Functional tests associated with sarcopenia in moderate chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2021;15:569–576. doi: 10.1080/17476348.2021.1850276. PubMed DOI

Pulmonary rehabilitation for patients with chronic pulmonary disease (COPD): An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2012;12:1–75. PubMed PMC

de Sire A., Andrenelli E., Negrini F., Lazzarini S.G., Patrini M., Ceravolo M.G. Rehabilitation and COVID-19: The Cochrane Rehabilitation 2020 rapid living systematic review. Eur. J. Phys. Rehabil. Med. 2021;56:1–13. doi: 10.23736/s1973-9087.20.06614-9. PubMed DOI

de Sire A., Andrenelli E., Negrini F., Patrini M., Lazzarini S.G., Ceravolo M.G. Rehabilitation and COVID-19: A rapid living systematic review by Cochrane Rehabilitation Field updated as of December 31st, 2020 and synthesis of the scientific literature of 2020. Eur. J. Phys. Rehabil. Med. 2021;57:181–188. doi: 10.23736/S1973-9087.21.06870-2. PubMed DOI

Seid A.A., Aychiluhm S.B., Mohammed A.A. Effectiveness and feasibility of telerehabilitation in patients with COVID-19: A systematic review and meta-analysis. BMJ Open. 2022;12:e063961. doi: 10.1136/bmjopen-2022-063961. PubMed DOI PMC

Md Fadzil N.H., Shahar S., Rajikan R., Singh D.K.A., Mat Ludin A.F., Subramaniam P., Ibrahim N., Vanoh D., Mohamad Ali N. A Scoping Review for Usage of Telerehabilitation among Older Adults with Mild Cognitive Impairment or Cognitive Frailty. Int. J. Env. Res. Public Health. 2022;19:4000. doi: 10.3390/ijerph19074000. PubMed DOI PMC

Leochico C.F.D., Perez M.F.J., Mojica J.A.P., Ignacio S.D. Telerehabilitation Readiness, Knowledge, and Acceptance of Future Physiatrists in the Philippines: An Online Survey During the COVID-19 Pandemic. Front. Rehabil. Sci. 2022;3:921013. doi: 10.3389/fresc.2022.921013. PubMed DOI PMC

Tsutsui M., Gerayeli F., Sin D.D. Pulmonary Rehabilitation in a Post-COVID-19 World: Telerehabilitation as a New Standard in Patients with COPD. Int. J. Chron. Obs. Pulmon. Dis. 2021;16:379–391. doi: 10.2147/COPD.S263031. PubMed DOI PMC

Rutkowski S. Management Challenges in Chronic Obstructive Pulmonary Disease in the COVID-19 Pandemic: Telehealth and Virtual Reality. J. Clin. Med. 2021;10:1261. doi: 10.3390/jcm10061261. PubMed DOI PMC

Spitzer K.A., Stefan M.S., Priya A., Pack Q.R., Pekow P.S., Lagu T., Pinto-Plata V.M., ZuWallack R.L., Lindenauer P.K. Participation in Pulmonary Rehabilitation after Hospitalization for Chronic Obstructive Pulmonary Disease among Medicare Beneficiaries. Ann. Am. Thorac. Soc. 2019;16:99–106. doi: 10.1513/AnnalsATS.201805-332OC. PubMed DOI PMC

Elbaz S., Cinalioglu K., Sekhon K., Gruber J., Rigas C., Bodenstein K., Naghi K., Lavin P., Greenway K.T., Vahia I., et al. A Systematic Review of Telemedicine for Older Adults With Dementia During COVID-19: An Alternative to In-person Health Services? Front. Neurol. 2021;12:761965. doi: 10.3389/fneur.2021.761965. PubMed DOI PMC

Golmohammadi K., Jacobs P., Sin D.D. Economic evaluation of a community-based pulmonary rehabilitation program for chronic obstructive pulmonary disease. Lung. 2004;182:187–196. doi: 10.1007/s00408-004-3110-2. PubMed DOI

Ontan M.S., Dokuzlar O., Ates Bulut E., Soysal P., Isik A.T. The relationship between osteoporosis and sarcopenia, according to EWGSOP-2 criteria, in outpatient elderly. J. Bone Miner. Metab. 2021;39:684–692. doi: 10.1007/s00774-021-01213-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace