• This record comes from PubMed

Physical Properties and Biodegradability Evaluation of Vulcanized Epoxidized Natural Rubber/Thermoplastic Potato Starch Blends

. 2022 Oct 25 ; 15 (21) : . [epub] 20221025

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.2.69/0.0/0.0/19_073/0016928 ESF in OP RDE
A1_FCHT_2022_004 The grant of Specific university research - IGA
A2_FCHT_2022_005 The grant of Specific university research - IGA

The sustainable material-thermoplastic potato starch (TPS)-was blended with modified natural rubber-epoxidized natural rubber (ENR). The poor mechanical properties of the ENR/TPS blends limited the application. Sulfur vulcanization is a common and economical method to improve the mechanical properties in the rubber industry. To fully understand the relationship between vulcanization systems and ENR/TPS blends and the sustainability of the developed material, the effects of a vulcanization accelerator (N-cyclohexylbenzothiazole-2-sulphenamide (CBS), 2-mercaptobenzothiazole (MBT), N-tert-butylbenzothiazole-2-sulphenamide (TBBS)) and a system type (conventional vulcanization (CV), semi-efficient vulcanization (SEV) and efficient vulcanization (EV)) on curing characteristics, mechanical and thermal properties, water absorption and biodegradability were systematically evaluated. The results indicate that vulcanization significantly improves the mechanical properties of ENR/TPS blends. The performance optimization of the CBS-CV vulcanization system is the best for improving the mechanical properties and reducing the water absorption. The CBS-CV curing system makes ENR/TPS less biodegradable (12-56% of mass loss) than other accelerators and systems. TBBS-CV makes the material more biodegradable (18-66% of mass loss). The low rubber content enables the rapid biodegradation of the vulcanized blend. This has implications for research on sustainable materials. The material can be applied for eco-friendly packaging and agricultural films, etc. The investigation on performance by using common accelerators and systems provides ideas for industries and research.

See more in PubMed

Kaseem M., Hamad K., Deri F. Rheological and mechanical properties of polypropylene/thermoplastic starch blend. Polym. Bull. 2012;68:1079–1091. doi: 10.1007/s00289-011-0611-z. DOI

Nafchi M., Moradpour M., Saeidi M., Alias A.K. Thermoplastic starches: Properties, challenges, and prospects. Starch-Stärke. 2013;65:61–72. doi: 10.1002/star.201200201. DOI

Cai Z., Čadek D., Šmejkalová P., Kadeřábková A., Nová M., Kuta A. The modification of properties of thermoplastic starch materials: Combining potato starch with natural rubber and epoxidized natural rubber. Mater. Today Commun. 2021;26:101912. doi: 10.1016/j.mtcomm.2020.101912. DOI

Kargarzadeh H., Ahmad I., Abdullah I., Thomas R., Dufresne A., Thomas S., Hassan A. Functionalized liquid natural rubber and liquid epoxidized natural rubber: A promising green toughening agent for polyester. J. Appl. Polym. Sci. 2015:132. doi: 10.1002/app.41292. DOI

Kruželák J., Sýkora R., Hudec I. Vulcanization of rubber compounds with peroxide curing systems. Rubber Chem. Technol. 2017;90:60–88. doi: 10.5254/rct.16.83758. DOI

Hofmann W. Rubber Technology Handbook. Hanser Publishers; Cincinnati, OH, USA: 1989.

Nagdi K. Rubber as an Engineering Material: Guideline for Users. Hanser Verlag; Munich, Germany: 1993.

Blow C.M. Rubber Technology and Manufacture. CRC Press; Boca Raton, FL, USA: 1971.

Mark J.E., Erman B., Roland M. The Science and Technology of Rubber. Academic Press; Cambridge, MA, USA: 2013.

Cheremisinoff N.P. Condensed Encyclopedia of Polymer Engineering Terms. Butterworth-Heinemann; Oxford, UK: 2001.

Coran A.Y. Vulcanization, Science and Technology of Rubber. Elsevier; Amsterdam, The Netherlands: 1994. pp. 339–385.

Nakason C., Wannavilai P., Kaesaman A. Effect of vulcanization system on properties of thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends. Polym. Test. 2006;25:34–41. doi: 10.1016/j.polymertesting.2005.09.007. DOI

Sadequl , Ishiaku U., Ismail H., Poh B. The effect of accelerator/sulphur ratio on the scorch time of epoxidized natural rubber. Eur. Polym. J. 1998;34:51–57. doi: 10.1016/S0014-3057(97)00067-0. DOI

Poh B.T., Chen M., Ding B. Cure characteristics of unaccelerated sulfur vulcanization of epoxidized natural rubber. J. Appl. Polym. Sci. 1996;60:1569–1574. doi: 10.1002/(SICI)1097-4628(19960606)60:10<1569::AID-APP7>3.0.CO;2-H. DOI

Larpkasemsek A., Raksaksri L., Chuayjuljit S., Chaiwutthinan P., Boonmahitthisud A. Effects of sulfur vulcanization system on cure characteristics, physical properties and thermal aging of epoxidized natural rubber. J. Met. Mater. Miner. 2019;29:49–57.

Poh B.T., Khok G. Tensile property of epoxidized natural rubber/natural rubber blends. Polym.-Plast. Technol. Eng. 2000;39:151–161. doi: 10.1081/PPT-100100021. DOI

Chuayjuljit S., Nutchapong T., Saravari O., Boonmahitthisud A. Preparation and characterization of epoxidized natural rubber and epoxidized natural rubber/carboxylated styrene butadiene rubber blends. J. Met. Mater. Miner. 2015;25:27–34.

MWahab K.A., Ismail H., Othman N. Effects of dynamic vulcanization on the physical, mechanical, and morphological properties of high-density polyethylene/(natural rubber)/(thermoplastic tapioca starch) blends. J. Vinyl Addit. Technol. 2012;18:192–197.

Formela K., Wąsowicz D., Formela M., Hejna A., Haponiuk J. Curing characteristics, mechanical and thermal properties of reclaimed ground tire rubber cured with various vulcanizing systems. Iran. Polym. J. 2015;24:289–297. doi: 10.1007/s13726-015-0320-9. DOI

Riyajan S.-A. Physical Properties of Cured Self-green Epoxidized Natural Rubber with Amino Acid. J. Polym. Environ. 2022;30:2304–2313. doi: 10.1007/s10924-021-02342-9. DOI

Kahar A.W.M., Low K.Y., Ismail H. Study of Thermoplastic Starch Incorporation on Polylactic Acid/Natural Rubber Blends via Dynamic Vulcanization Approach, Biofiller-Reinforced Biodegradable Polymer Composites. CRC Press; Boca Raton, FL, USA: 2020. pp. 91–117.

ASTM; West Conshohocken, PA, USA: 2019. Standard Test Method for Rubber Property—Vulcanization Using Rotorless Cure Meters.

ISO; Geneva, Switzerland: 2017. Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties.

ISO; Geneva, Switzerland: 2018. Rubber, Vulcanized or Thermoplastic—Determination of Hardness—Part 2: Hardness between 10 IRHD and 100 IRHD.

ASTM; West Conshohocken, PA, USA: 2020. Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions.

ISO; Geneva, Switzerland: 2020. Resilient floor coverings—Specification for Homogeneous and Heterogeneous Smooth Rubber Floor Coverings.

Joseph R., George K., Francis D.J. Studies on the cure characteristics and vulcanizate properties of 50/50 NR/SBR blend. J. Appl. Polym. Sci. 1988;35:1003–1017. doi: 10.1002/app.1988.070350415. DOI

Ahmed K., Nizami S.S., Raza N.Z., Mahmood K. Mechanical, swelling, and thermal aging properties of marble sludge-natural rubber composites. Int. J. Ind. Chem. 2012;3:1–12. doi: 10.1186/2228-5547-3-21. DOI

ASTM; West Conshohocken, PA, USA: 2021. Biodegradation Test—Composting.

Khimi S.R., Pickering K.L. A new method to predict optimum cure time of rubber compound using dynamic mechanical analysis. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40008. DOI

Pacáková J.V.V. PLASTICS, Encyclopedia of Analytical Science. 2nd ed. Volume 8 Elsevier; Amsterdam, The Netherlands: 2005.

Mathew V.S., George S.C., Parameswaranpillai J., Thomas S. Epoxidized natural rubber/epoxy blends: Phase morphology and thermomechanical properties. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.39906. DOI

Mansilla M., Silva L., Salgueiro W., Marzocca A., Somoza A. A study about the structure of vulcanized natural rubber/styrene butadiene rubber blends and the glass transition behavior. J. Appl. Polym. Sci. 2012;125:992–999. doi: 10.1002/app.36321. DOI

Hernández L.G., Díaz A.R., Valentín J.L., Marcos-Fernández Á., Posadas P. Conventional and efficient crosslinking of natural rubber: Effect of heterogeneities on the physical properties. Elastomer Kunstst. 2005;58:638–643.

Ghorai S., Jalan A.K., Roy M., Das A., De D. Tuning of accelerator and curing system in devulcanized green natural rubber compounds. Polym. Test. 2018;69:133–145. doi: 10.1016/j.polymertesting.2018.05.015. DOI

Wu Y., Joseph S., Aluru N. Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels. J. Phys. Chem. B. 2009;113:3512–3520. doi: 10.1021/jp808145x. PubMed DOI

Ismail H., Salmah , Nasir M. The effect of dynamic vulcanization on mechanical properties and water absorption of silica and rubberwood filled polypropylene/natural rubber hybrid composites. Int. J. Polym. Mater. 2003;52:229–238. doi: 10.1080/00914030304892. DOI

McNaught A.D., Wilkinson A. Compendium of Chemical Terminology. Blackwell Science Oxford; Oxford, UK: 1997.

Chandler, Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437:640–647. doi: 10.1038/nature04162. PubMed DOI

Valentín J., Carretero-González J., Mora-Barrantes I., Chassé W., Saalwachter K. Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules. 2008;41:4717–4729. doi: 10.1021/ma8005087. DOI

El Shafee E., Naguib H. Water sorption in cross-linked poly (vinyl alcohol) networks. Polymer. 2003;44:1647–1653. doi: 10.1016/S0032-3861(02)00865-0. DOI

Bajpai A., Giri A. Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr. Polym. 2003;53:271–279. doi: 10.1016/S0144-8617(03)00071-7. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...