Analysis of the Effect of Fe2O3 Addition in the Combustion of a Wood-Based Fuel

. 2022 Nov 03 ; 15 (21) : . [epub] 20221103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36363332

A comparative study was carried out of emissions from the catalytic combustion of pellets made from furniture board waste and pellets made from wood mixed with Fe2O3. The mass content of the Fe2O3 catalyst in the fuel was varied from 0% to 5%, 10%, and 15% in relation to the total dry mass weight of the pellets. The average flame temperature in the boiler was between 730 and 800 °C. The effect of the catalyst concentration in the fuel was analysed with respect to the contents of O2, CO2, CO, H2, and NOx in the flue gas and the combustion quality of the pellets in the heating boiler. Changes in the CO2 content and the proportion of unburned combustible components in the combustion residue were assessed. It was established that an increase in the Fe2O3 content of the prepared fuels had a positive effect on reducing NOx, CO, and H2 emissions. However, the proportion of iron oxide in the tested fuel pellets did not significantly influence changes in their combustion quality. A strong effect of the addition of Fe2O3 on the reduction of the average NOx content in the flue gas occurred with the combustion of furniture board fuel, from 51.4 ppm at 0% Fe2O3 to 7.7 ppm for an additive content of 15%. Based on the analysis of the residue in the boiler ash pan, the amount of unburned combustibles relative to their input amounts was found to be 0.09-0.22% for wood pellets and 0.50-0.31% for furniture board waste pellets.

Zobrazit více v PubMed

Regueiro A., Jezerská L., Pérez-Orozco R., Patiño D., Zegzulka J., Nečas J. Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor. Energies. 2019;12:1352. doi: 10.3390/en12071352. DOI

Minowa T., Kojima T., Matsuoka Y. Study for utilization of municipal residues as bioenergy resource in Japan. Biomass-Bioenergy. 2005;29:360–366. doi: 10.1016/j.biombioe.2004.06.018. DOI

Borek K., Romaniuk W., Roman K., Roman M., Kuboń M. The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates. Energies. 2021;14:2132. doi: 10.3390/en14082132. DOI

Lisý M., Lisá H., Jecha D., Baláš M., Križan P. Characteristic Properties of Alternative Biomass Fuels. Energies. 2020;13:1448. doi: 10.3390/en13061448. DOI

Kuboń M., Kocira S., Kocira A., Leszczyńska D. Renewable Energy Sources: Engineering, Technology, Innovation. Springer; Cham, Switzerland: 2018. Use of Straw as Energy Source in View of Organic Matter Balance in Family Farms. Springer Proceedings in Energy. DOI

Szyszlak-Bargłowicz J., Słowik T., Zając G., Blicharz-Kania A., Zdybel B., Andrejko D., Obidziński S. Energy Parameters of Miscanthus Biomass Pellets Supplemented with Copra Meal in Terms of Energy Consumption during the Pressure Agglomeration Process. Energies. 2021;14:4167. doi: 10.3390/en14144167. DOI

Obidziński S., Puchlik M., Dołżyńska M. Pelletization of Post-Harvest Tobacco Waste and Investigation of Flue Gas Emissions from Pellet Combustion. Energies. 2020;13:6002. doi: 10.3390/en13226002. DOI

Zdanowicz A., Chojnacki J. Impact of natural binder on pellet quality; Proceedings of the 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture; Lublin, Poland. 22–24 November 2017; pp. 456–460.

Chojnacki J., Zdanowicz A., Ondruška J., Šooš Ľ., Smuga-Kogut M. The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw. Energies. 2021;14:405. doi: 10.3390/en14020405. DOI

Obidziński S., Dołżyńska M., Kowczyk-Sadowy M., Jadwisieńczak K., Sobczak P. Densification and Fuel Properties of Onion Husks. Energies. 2019;12:4687. doi: 10.3390/en12244687. DOI

Chojnacki J., Ondruska J., Kuczynski W., Soos L., Balasz B. Emissions from the combustion of solid biofuels; Proceedings of the 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture; Lublin, Poland. 22–24 November 2017; pp. 70–75.

Yang B., Peng L., Wang Y., Song J. The characteristics of air pollutants from the combustion of biomass pellets. Energy Sources Part A Recover. Util. Environ. Eff. 2017;40:351–357. doi: 10.1080/15567036.2017.1419515. DOI

Kuczaj A. Emission of organic compounds during biomass combustion. Bud. I Inżynieria Sr. 2010;3:205–214.

Liu H., Chaney J., Li J., Sun C. Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel. 2012;103:792–798. doi: 10.1016/j.fuel.2012.10.028. DOI

Roy M.M., Dutta A., Corscadden K. An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace. Appl. Energy. 2013;108:298–307. doi: 10.1016/j.apenergy.2013.03.044. DOI

Li J., Zhang X., Yang W., Blasiak W. Effects of Flue Gas Internal Recirculation on NOx and SOx Emissions in a Co-Firing Boiler. Int. J. Clean Coal Energy. 2013;2:13–21. doi: 10.4236/ijcce.2013.22002. DOI

Kraszkiewicz A., Sobczak P., Santoro F., Anifantis A.S., Pascuzzi S. Co-firing of biomass with gas fuel in low–power boilers; Proceedings of the 19th International Scientific Conference on Engineering for Rural Development; Jegava, Latvia. 20–22 May 2020; [(accessed on 1 September 2022)]. pp. 76–81. Available online: https://www.tf.llu.lv/conference/proceedings2020/Papers/TF018.pdf.

Si T., Cheng J., Zhou F., Zhou J., Cen K. Control of pollutants in the combustion of biomass pellets prepared with coal tar residue as a binder. Fuel. 2017;208:439–446. doi: 10.1016/j.fuel.2017.07.051. DOI

Vicente E.D., Duarte M.A., Tarelho L.A.C., Alves C.A. Efficiency of Emission Reduction Technologies for Residential Biomass Combustion Appliances: Electrostatic Precipitator and Catalyst. Energies. 2022;15:4066. doi: 10.3390/en15114066. DOI

Song Y., Hu J., Liu J., Evrendilek F., Buyukada M. Catalytic effects of CaO, Al2O3, Fe2O3, and red mud on Pteris vittata combustion: Emission, kinetic and ash conversion patterns. J. Clean. Prod. 2020;252:119646. doi: 10.1016/j.jclepro.2019.119646. DOI

Alonso D.M., Bond J.Q., Dumesic J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010;12:1493–1513. doi: 10.1039/c004654j. DOI

Najser T., Gaze B., Knutel B., Verner A., Najser J., Mikeska M., Chojnacki J., Němček O. Analysis of the Effect of Catalytic Additives in the Agricultural Waste Combustion Process. Materials. 2022;15:3526. doi: 10.3390/ma15103526. PubMed DOI PMC

Najser J., Mikeska M., Peer V., Frantík J., Kielar J. The addition of dolomite to the combustion of biomass fuel forms: The study of ashes agglomeration and fusibility. Biomass-Convers. Biorefinery. 2019;10:471–481. doi: 10.1007/s13399-019-00438-w. DOI

Yang X., Lu D., Zhu B., Sun Z., Li G., Li J., Liu Q., Jiang G. Phase transformation of silica particles in coal and biomass combustion processes. Environ. Pollut. 2022;292:118312. doi: 10.1016/j.envpol.2021.118312. PubMed DOI

Vamvuka D., Tsamourgeli V., Galetakis M. Study on Catalytic Combustion of Biomass Mixtures with Poor Coals. Combust. Sci. Technol. 2014;186:68–82. doi: 10.1080/00102202.2013.846331. DOI

Bruchajzer E., Frydrych B., Szymańska J. Iron oxides—Calculated on Fe. Documentation of proposed values of occupational exposure limits (OELs) [(accessed on 1 September 2022)];Podstawy I Metod. Oceny Sr. Pr. 2017 2:51–87. doi: 10.5604/01.3001.0009.9360. Available online: https://www.ciop.pl/CIOPPortalWAR/file/83025/20170630114941&PIMOS_2_2017_51.pdf. DOI

Florczak B., Cudziło S. Katalityczny efekt nanocząstek Fe2O3 na spalanie heterogenicznego stałego paliwa rakietowego PBAN/NH4ClO4/HMX/Al. Biul. WAT. 2009;28:187–195.

Stelmachowski P., Kopacz A., Legutko P., Indyka P., Wojtasik M., Ziemiański L., Żak G., Sojka Z., Kotarba A. The role of crystallite size of iron oxide catalyst for soot combustion. Catal. Today. 2015;257:111–116. doi: 10.1016/j.cattod.2015.02.018. DOI

Wagloehner S., Kureti S. Study on the mechanism of the oxidation of soot on Fe2O3 catalyst. Appl. Catal. B Environ. 2012;125:158–165. doi: 10.1016/j.apcatb.2012.05.032. DOI

Wagloehner S., Baer J.N., Kureti S. Structure–activity relation of iron oxide catalysts in soot oxidation. Appl. Catal. B Environ. 2014;147:1000–1008. doi: 10.1016/j.apcatb.2013.09.049. DOI

Yu Z., Li C., Fang Y., Huang J., Wang Z. Reduction Rate Enhancements for Coal Direct Chemical Looping Combustion with an Iron Oxide Oxygen Carrier. Energy Fuels. 2012;26:2505–2511. doi: 10.1021/ef201884r. DOI

Haruta M., Tsubota S., Kobayashi T., Kageyama H., Genet M.J., Delmon B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993;144:175–192. doi: 10.1006/jcat.1993.1322. DOI

Minicò S., Scirè S., Crisafulli C., Maggiore R., Galvagno S. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Appl. Catal. B Environ. 2000;28:245–251. doi: 10.1016/S0926-3373(00)00181-8. DOI

Pan Y., Abulizi A., Talifu D., Tursun Y., Xu S. Catalytic gasification of biomass and coal blend with Fe2O3/olivine in a decoupled triple bed. Fuel Process. Technol. 2019;194:106121. doi: 10.1016/j.fuproc.2019.106121. DOI

Palma A., Paris E., Carnevale M., Vincenti B., Perilli M., Guerriero E., Cerasa M., Proto A.R., Papandrea S.F., Bonofiglio R., et al. Biomass Combustion: Evaluation of POPs Emissions (VOC, PAH, PCB, PCDD/F) from Three Different Biomass Prunings (Olive, Citrus and Grapevine) Atmosphere. 2022;13:1665. doi: 10.3390/atmos13101665. DOI

Pater Z. Podstawy Metalurgii I Odlewnictwa. Politechnika Lubelska; Lublin, Poland: 2014. [(accessed on 8 August 2022)]. Wytwarzanie surówki żelaza; p. 56. Available online: http://bc.pollub.pl/dlibra/docmetadata?showContent=true&id=8711.

Sharma T. Reduction of double layered iron ore pellets. Int. J. Miner. Process. 1997;49:201–206. doi: 10.1016/S0301-7516(96)00020-8. DOI

Wei R., Cang D., Bai Y., Huang D., Liu X. Reduction characteristics and kinetics of iron oxide by carbon in biomass. Ironmak. Steelmak. 2015;43:144–152. doi: 10.1179/1743281215Y.0000000061. DOI

Rybiński P., Syrek B., Szwed M., Bradło D., Żukowski W., Marzec A., Śliwka-Kaszyńska M. Influence of Thermal Decomposition of Wood and Wood-Based Materials on the State of the Atmospheric Air. Emissions of Toxic Compounds and Greenhouse Gases. Energies. 2021;14:3247. doi: 10.3390/en14113247. DOI

Wöhler A 550 Flue Gas Analyzer 2020. [(accessed on 1 October 2020)]. Available online: https://www.woehler-international.com/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...