Analysis of the Effect of Catalytic Additives in the Agricultural Waste Combustion Process
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
reg. no. CZ.02.2.69/0.0/0.0/19_073/0016945
Doctoral grant competition VSB - Technical University of Ostrava, within the Operational Programme Research, Development and Education
PubMed
35629553
PubMed Central
PMC9143614
DOI
10.3390/ma15103526
PII: ma15103526
Knihovny.cz E-zdroje
- Klíčová slova
- agricultural waste, catalytic additives, combustion, emission reduction,
- Publikační typ
- časopisecké články MeSH
This paper presents the research results of the effect of using calcium oxide and potassium permanganate on the combustion of pellets from wheat bran and beet pulp. The measurements were performed in the technical laboratory of the Centre of Energy Utilization of Non-Traditional Energy Sources in Ostrava. The research examined the effect of the use of chemical substances on the amount of air pollutants from biomass thermal conversion in a low-power boiler and the process temperature. First, we performed technical and elementary analyses of agricultural waste. The raw material was then comminuted, mixed with a selected additive, pelletized, and finally burned in a low-power boiler. The additive was added in three proportions: 1:20, 1:10, and 1:6.67 (i.e., 15%) relative to the fuel weight. The combustion process efficiency was measured using a flue gas analyzer and three thermocouples attached to the data recorder. From the measurement results, we were able to determine the percentage reduction of pollutant emissions into the atmosphere (CO, NOx, and SO2) due to the use of additives. Because emission standards are becoming increasingly stringent and fuel and energy prices are rising, the results presented in this article may be useful to agri-food processing plants that want to manage these materials thermally.
Zobrazit více v PubMed
Lorenz U. Skutki Spalania Węgla Kamiennego Dla Środowiska Przyrodniczego I Możliwości Ich Ograniczania. Mat. Szkoły Eksploatacji Podziemnej. Sympozja i Konferencje nr 64; Kraków, Poland: 2005.
European Environment Agency . Air Quality in Europe: 2020 Report. Publications Office of the European Union; Luxembourg: 2020.
Wielgosiński G., Łechtańska P., Namiecińska O. Emission of some pollutants from biomass combustion in comparison to hard coal combustion. J. Energy Inst. 2017;90:787–796. doi: 10.1016/j.joei.2016.06.005. DOI
Kuczaj A. Emission of organic compounds during biomass combustion. Bud. I Inżynieria Sr. 2010;3:205–214.
Brook R.D. Cardiovascular effects of air pollution. Clin. Sci. 2008;115:175–187. doi: 10.1042/CS20070444. PubMed DOI
Kampa M., Castanas E. Human health effects of air pollution. Environ. Pollut. 2008;151:362–367. doi: 10.1016/j.envpol.2007.06.012. PubMed DOI
Boningari T., Smirniotis P.G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Curr. Opin. Chem. Eng. 2016;13:133–141. doi: 10.1016/j.coche.2016.09.004. DOI
Stowell J.D., Kim Y.-M., Gao Y., Fu J.S., Chang H.H., Liu Y. The Impact of Climate Change and Emissions Control on Future Ozone Levels: Implications for Human Health. Environ. Int. 2017;108:41–50. doi: 10.1016/j.envint.2017.08.001. PubMed DOI PMC
Chen T.M., Kuschner W.G., Gokhale J., Shofer S. Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide Health Effects. Am. J. Med. Sci. 2007;333:249–256. doi: 10.1097/MAJ.0b013e31803b900f. PubMed DOI
Guerreiro C.D.B.B., Horálek J., de Leeuw F., Couvidat F. Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects. Environ. Pollut. 2016;214:657–667. doi: 10.1016/j.envpol.2016.04.081. PubMed DOI
Wang S.L., Lin C.Y., Guo Y.L., Lin L.Y., Chou W.L., Chang L.W. Infant exposure to polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls (PCDD/Fs, PCBs)—Correlation between prenatal and postnatal exposure. Chemosphere. 2004;54:1459–1473. doi: 10.1016/j.chemosphere.2003.08.012. PubMed DOI
Baccarelli A., Mocarelli P., Patterson D.G., Bonzini M., Pesatori A.C., Caporaso N., Landi M.T. Immunologic Effects of Dioxin: New Results from Seveso and Comparison with Other Studies. Environ. Health Perspect. 2003;110:1169–1173. doi: 10.1289/ehp.021101169. PubMed DOI PMC
European Commission The EU Emissions Trading System (EU ETS) [(accessed on 14 March 2022)]. Available online: https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-eu-ets_pl.
European Commission 2030 Climate & Energy Framework. [(accessed on 14 March 2022)]. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_en.
European Parliament and the Council Commission Implementing Decision (EU) 2017/1442. Off. J. Eur. Union. 2017;60:1–82.
Chyc M. The role of fuel additives in the fuel combustion process. Res. Rep. Min. Environ. 2012;11:5–16.
Doggali P., Kusaba H., Einaga H., Bensaid S., Rayalu S., Teraoka Y., Labhsetwar N. Low-cost catalysts for the control of indoor CO and PM emissions from solid fuel combustion. J. Hazard. Mater. 2011;186:796–804. doi: 10.1016/j.jhazmat.2010.11.072. PubMed DOI
Long H.M., Li J.X., Wang P., Gao G., Tang G.W. Emission reduction of dioxin in iron ore sintering by adding urea as inhibitor. Ironmak. Steelmak. 2011;38:258–262. doi: 10.1179/1743281210Y.0000000008. DOI
Tic W.J. System poprawy efektywności energetycznej i ekologicznej spalania paliw stałych. Chemik. 2014;68:850–855.
Li J., Zhang X., Yang W., Blasiak W. Effects of Flue Gas Internal Recirculation on NOx and SOx Emissions in a Co-Firing Boiler. Int. J. Clean Coal Energy. 2013;02:13–21. doi: 10.4236/ijcce.2013.22002. DOI
Gaze B., Noszczyk T. Peat pellet as an alternative fuel to other solid energy carriers. Przem. Chem. 2019;1:68–72.
Wojtko P., Gaze B., Knutel B., Wacławek A., Bukowski P., Romański L. The use of catalytic additives for the combustion of sunflower husk pellets in a low-power boiler. Przem. Chem. 2021;5:480–484.
Lisý M., Lisá H., Jecha D., Baláš M., Križan P. Characteristic Properties of Alternative Biomass Fuels. Energies. 2020;13:1448. doi: 10.3390/en13061448. DOI
Mirowski T., Orzechowska M. The use of biomass fuels in individual heating in areas threatened by low emission. Polityka Energetyczna—Energy Policy J. 2015;18:75–88.
Jandačka J., Holubčík M. Emissions Production from Small Heat Sources Depending on Various Aspects. Mob. Netw. Appl. 2020;25:904–912. doi: 10.1007/s11036-020-01519-1. DOI
Szatyłowicz E., Skoczko I. Evaluation of the PAH Content in Soot from Solid Fuels Combustion in Low Power Boilers. Energies. 2019;12:4254. doi: 10.3390/en12224254. DOI
Solid Biofuels—Determination of Calorific Value. Polish Committee for Standardization; Warsaw, Poland: 2017. [(accessed on 14 March 2022)]. Available online: https://standards.globalspec.com/std/9972508/iso-18125.
Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Committee for Standardization; Warsaw, Poland: 2015. [(accessed on 18 February 2022)]. Available online: https://standards.globalspec.com/std/2048180/iso-16948.
Szul M., Iluk T., Zuwała J. Use of CO2 in Pressurized, Fluidized Bed Gasification of Waste Biomasses. Energies. 2022;15:1395. doi: 10.3390/en15041395. DOI
Gaze B. Określenie dominującego mechanizmu powstawania NOx w kotłach małej mocy zasilanych biomasą. Przemysł Chem. 2020;1:70–75. doi: 10.15199/62.2020.2.8. DOI
Najser J., Mikeska M., Peer V., Frantík J., Kielar J. The addition of dolomite to the combustion of biomass fuel forms: The study of ashes agglomeration and fusibility. Biomass Convers. Biorefinery. 2019;10:471–481. doi: 10.1007/s13399-019-00438-w. DOI
Gaze B., Knutel B., Jajczyk M., Wacławek A., Bukowski P., Dębowski M. Analysis of the use of catalytic additives for combustion with wood pellets in a low-power boiler. Rynek Energii. 2021;4:93–98.
Gaze B., Romański L. The concept of using urea to reduce NOx emissions from low power biomass boilers. Przem. Chem. 2020;4:569–573.
Gaze B., Hrywna D., Romanski L., Kulazynski M. Effect of fuel type and active substance addition on exhaust gas emissions from vehicles powered by a spark ignition engine. Przem. Chem. 2021;1:75–80.
Analysis of the Effect of Fe2O3 Addition in the Combustion of a Wood-Based Fuel