Effects of Structure and Composition of Adsorbents on Competitive Adsorption of Gaseous Emissions: Experiment and Modeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016945, DGS/TEAM/2020-005
Ministry of Education Youth and Sports
LM2018098
Ministry of Education Youth and Sports
PubMed
36839092
PubMed Central
PMC9961998
DOI
10.3390/nano13040724
PII: nano13040724
Knihovny.cz E-zdroje
- Klíčová slova
- adsorbent structure, competitive adsorption, gaseous emission, molecular modeling, morphology,
- Publikační typ
- časopisecké články MeSH
Dangerous gases arising from combustion processes must be removed from the air simply and cheaply, e.g., by adsorption. This work is focused on competitive adsorption experiments and force field-based molecular modeling of the interactions at the molecular level. Emission gas, containing CO, NO, SO2, and CO2, was adsorbed on activated carbon, clay mineral, silicon dioxide, cellulose, or polypropylene at two different temperatures. At 20 °C, activated carbon had the highest NO and SO2 adsorption capacity (120.83 and 3549.61 μg/g, respectively). At 110 °C, the highest NO and SO2 adsorption capacity (6.20 and 1182.46 μg/g, respectively) was observed for clay. CO was adsorbed very weakly, CO2 not at all. SO2 was adsorbed better than NO, which correlated with modeling results showing positive influence of carboxyl and hydroxyl functional groups on the adsorption. In addition to the wide range of adsorbents, the main novelty of this study is the modeling strategy enabling the simulation of surfaces with pores of controllable sizes and shapes, and the agreement of the results achieved by this strategy with the results obtained by more computationally demanding methods. Moreover, the agreement with experimental data shows the modeling strategy to be a valuable tool for further adsorption studies.
Zobrazit více v PubMed
Brusseau M.L., Pepper I.L., Gerba C.P. Environmental and Pollution Science. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2019.
Henzel C.K. Investigating Manufacturing Pollution. 1st ed. Child’s World; Parker, CO, USA: 2022.
Tillman D.A. Coal-Fired Electricity and Emissions Control: Efficiency and Effectiveness. 1st ed. Butterworth-Heinemann; Oxford, UK: 2018.
Matz C.J., Egyed M., Hocking R., Seenundun S., Charman N., Edmonds N. Human health effects of traffic-related air pollution (TRAP): A scoping review protocol. Syst. Rev. 2019;8:223. doi: 10.1186/s13643-019-1106-5. PubMed DOI PMC
Boot-Handford M.E., Abanades J.C., Anthony E.J., Blunt M.J., Brandani S., Mac Dowell N., Fernández J.R., Ferrari M.C., Gross R., Hallett J.P., et al. Carbon capture and storage update. Energy Environ. Sci. 2014;7:130–189. doi: 10.1039/C3EE42350F. DOI
Werther J., Saenger M., Hartge E.U., Ogada T., Siagi Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000;26:1–27. doi: 10.1016/S0360-1285(99)00005-2. DOI
Obey G., Adelaide M., Ramaraj R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022;7:109–115. doi: 10.1016/j.jobab.2021.12.001. DOI
Zheng Q., Li Z., Watanabe M. Production of solid fuels by hydrothermal treatment of wastes of biomass, plastic, and biomass/plastic mixtures: A review. J. Bioresour. Bioprod. 2022;7:221–244. doi: 10.1016/j.jobab.2022.09.004. DOI
Bai J., Yu C., Li L., Wu P., Luo Z., Ni M. Experimental study on the NO and N2O formation characteristics during biomass combustion. Energy Fuels. 2013;27:515–522. doi: 10.1021/ef301383g. DOI
Jones J.M., Lea-Langton A.R., Ma L., Pourkashanian M., Williams A. Pollutants Generated by the Combustion of Solid Biomass Fuels. 1st ed. Springer; London, UK: 2014. The Combustion of Solid Biomass; pp. 25–43.
Yu C.H., Huang C.H., Tan C.S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012;12:745–769. doi: 10.4209/aaqr.2012.05.0132. DOI
Sircar S. Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 2006;45:5435–5448. doi: 10.1021/ie051056a. DOI
Zhu B., Liu Q., Zhou Q., Yang J., Ding J., Wen J. Absorption of carbon dioxide from flue gas using blended amine solutions. Chem. Eng. Technol. 2014;37:635–642. doi: 10.1002/ceat.201300240. DOI
Choi S., Drese J.H., Jones C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796–854. doi: 10.1002/cssc.200900036. PubMed DOI
Samanta A., Zhao A., Shimizu G.K., Sarkar P., Gupta R. Post-combustion CO2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 2012;51:1438–1463. doi: 10.1021/ie200686q. DOI
Wang Y., Zhou Y., Liu C., Zhou L. Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids Surfaces A Physicochem. Eng. Asp. 2008;322:14–18. doi: 10.1016/j.colsurfa.2008.02.014. DOI
Zhang J., Liu K., Clennell M.B., Dewhurst D.N., Pan Z., Pervukhina M., Han T. Molecular simulation studies of hydrocarbon and carbon dioxide adsorption on coal. Pet. Sci. 2015;12:692–704. doi: 10.1007/s12182-015-0052-7. DOI
Bezerra D.P., Oliveira R.S., Vieira R.S., Cavalcante C.L., Azevedo D. Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption. 2011;17:235–246. doi: 10.1007/s10450-011-9320-z. DOI
Li Z.S., Cai N.S., Huang Y.Y., Han H.J. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent. Energy Fuels. 2005;19:1447–1452. doi: 10.1021/ef0496799. DOI
Franchi R.S., Harlick P.J., Sayari A. Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res. 2005;44:8007–8013. doi: 10.1021/ie0504194. DOI
Ding Y., Alpay E. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci. 2000;55:3461–3474. doi: 10.1016/S0009-2509(99)00596-5. DOI
Srivatsa S.C., Bhattacharya S. Amine-based CO2 capture sorbents: A potential CO2 hydrogenation catalyst. J. CO2 Util. 2018;26:397–407. doi: 10.1016/j.jcou.2018.05.028. DOI
Li J.R., Kuppler R.J., Zhou H.C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009;38:1477–1504. doi: 10.1039/b802426j. PubMed DOI
Wang H., Bai J.Q., Yin Y., Wang S.F. Experimental and numerical study of SO2 removal from a CO2/SO2 gas mixture in a Cu-BTC metal organic framework. J. Mol. Graph. Model. 2020;96:107533. doi: 10.1016/j.jmgm.2020.107533. PubMed DOI
Ozensoy E., Goodman D.W. Vibrational spectroscopic studies on CO adsorption, NO adsorption CO+ NO reaction on Pd model catalysts. Phys. Chem. Chem. Phys. 2004;6:3765–3778. doi: 10.1039/b402302a. DOI
Joshi A.M., Tucker M.H., Delgass W.N., Thomson K.T. CO adsorption on pure and binary-alloy gold clusters: A quantum chemical study. J. Chem. Phys. 2006;125:194707. doi: 10.1063/1.2375094. PubMed DOI
Abdulrasheed A.A., Jalil A.A., Triwahyono S., Zaini M.A.A., Gambo Y., Ibrahim M. Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging technologies. Renew. Sustain. Energ. Rev. 2018;94:1067–1085. doi: 10.1016/j.rser.2018.07.011. DOI
Niu J., Miao J., Zhang H., Guo Y., Li L., Cheng F. Focusing on the impact of inherent minerals in coal on activated carbon production and its performance: The role of trace sodium on SO2 and/or NO removal. Energy. 2023;263:125638. doi: 10.1016/j.energy.2022.125638. DOI
Rodriguez J.A. The chemical properties of bimetallic surfaces: Importance of ensemble and electronic effects in the adsorption of sulfur and SO2. Prog. Surf. Sci. 2006;81:141–189. doi: 10.1016/j.progsurf.2006.02.001. DOI
Yi H., Deng H., Tang X., Yu Q., Zhou X., Liu H. Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. J. Hazard. Mater. 2012;203:111–117. doi: 10.1016/j.jhazmat.2011.11.091. PubMed DOI
Wang L., Xuan C., Zhang X., Sun R., Cheng X., Wang Z., Ma C. NOx Adsorption Mechanism of Coal-Based Activated Carbon Modified with Trace Potassium: In Situ DRIFTS and DFT Study. Energy Fuels. 2022;36:7633–7650. doi: 10.1021/acs.energyfuels.2c00814. DOI
Zhao R., Liu G., Wei G., Gao J., Lu H. Analysis of SO2 Physisorption by Edge-Functionalized Nanoporous Carbons Using Grand Canonical Monte Carlo Methods and Density Functional Theory: Implications for SO2 Removal. ACS Omega. 2021;6:33735–33746. doi: 10.1021/acsomega.1c05000. PubMed DOI PMC
Zeng W., Tan S.J., Liu M., Zhang D., Liu L., Do D.D. New Insights into the Capture of Low-level Gaseous Pollutants in Indoor Environment by Carbonaceous Materials: Effects of Functional Groups, Pore Size, and Presence of Moist. Sep. Purif. Technol. 2022;298:121652. doi: 10.1016/j.seppur.2022.121652. DOI
Wang J., Yang M., Deng D., Qiu S. The adsorption of NO, NH3, N2 on carbon surface: A density functional theory study. J. Mol. Model. 2017;23:262. doi: 10.1007/s00894-017-3429-2. PubMed DOI
Najser T., Gaze B., Knutel B., Verner A., Najser J., Mikeska M., Chojnacki J., Němček O. Analysis of the Effect of Catalytic Additives in the Agricultural Waste Combustion Process. Materials. 2022;15:3526. doi: 10.3390/ma15103526. PubMed DOI PMC
Towler G., Sinnott R. Chemical Engineering Design: Principles, Practice and Economic of Plant and Process Design. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013. Process Flowsheet Development; pp. 33–102.
Das T.K. Industrial Environmental Management: Engineering, Science, and Policy. 1st ed. Wiley; Hoboken, NJ, USA: 2020. Industrial Pollution Sources, Its Characterization, Estimation, and Treatment; pp. 71–113.
BIOVIA . Materials Studio 7.0. Dassault Systèmes; San Diego, CA, USA: 2013.
Chen P., Nishiyama Y., Putaux J.L., Mazeau K. Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose. 2014;21:897–908. doi: 10.1007/s10570-013-0053-x. DOI
Verenich S., Paul S., Pourdeyhimi B. Surface and bulk properties of glycidyl methacrylate modified polypropylene: Experimental and molecular modeling studies. J. Appl. Polym. Sci. 2008;108:2983–2987. doi: 10.1002/app.27780. DOI
Wyckoff R.W.G. Crystal Structures. 2nd ed. Wiley; New York, NY, USA: 1963.
Weiss Z., Kužvart M. Clay Minerals: Their Nanostructure and Utilization. 1st ed. Karolinum; Prague, Czech Republic: 2005.
Bednárek J., Matějová L., Jankovská Z., Vaštyl M., Sokolová B., Peikertová P., Šiler P., Verner A., Tokarský J., Koutník I., et al. The Influence of Structural Properties on the Adsorption Capacities of Microwave-assisted Biochars for Metazachlor Removal from Aqueous Solutions. J. Environ. Chem. Eng. 2022;10:108003. doi: 10.1016/j.jece.2022.108003. DOI
Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds. J. Phys. Chem. 1998;102:7338–7364. doi: 10.1021/jp980939v. DOI
Bazooyar F., Momany F.A., Bolton K. Validating empirical force fields for molecular-level simulation of cellulose dissolution. Comput. Theor. Chem. 2012;984:119–127. doi: 10.1016/j.comptc.2012.01.020. DOI
Deckers F., Rasim K., Schröder C. Molecular dynamics simulation of polypropylene: Diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. J. Polym. Res. 2022;29:463. doi: 10.1007/s10965-022-03304-y. DOI
Vijayakumar S.D., Ridzuan N. Molecular interaction study on Gemini surfactant and nanoparticles in wax inhibition of Malaysian crude oil. Asia-Pac. J. Chem. Eng. 2021;16:e2700. doi: 10.1002/apj.2700. DOI
Rai B., Sathish P., Tanwar J., Moon K.S., Fuerstenau D.W. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals. J. Colloid Interface Sci. 2011;362:510–516. doi: 10.1016/j.jcis.2011.06.069. PubMed DOI
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI