Interpretable machine learning methods for predictions in systems biology from omics data
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36387282
PubMed Central
PMC9650551
DOI
10.3389/fmolb.2022.926623
PII: 926623
Knihovny.cz E-zdroje
- Klíčová slova
- deep learning, explainable artificial intelligence, interpretable machine learning, metabolomics, multi-omics, proteomics, transcriptomics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Machine learning has become a powerful tool for systems biologists, from diagnosing cancer to optimizing kinetic models and predicting the state, growth dynamics, or type of a cell. Potential predictions from complex biological data sets obtained by "omics" experiments seem endless, but are often not the main objective of biological research. Often we want to understand the molecular mechanisms of a disease to develop new therapies, or we need to justify a crucial decision that is derived from a prediction. In order to gain such knowledge from data, machine learning models need to be extended. A recent trend to achieve this is to design "interpretable" models. However, the notions around interpretability are sometimes ambiguous, and a universal recipe for building well-interpretable models is missing. With this work, we want to familiarize systems biologists with the concept of model interpretability in machine learning. We consider data sets, data preparation, machine learning methods, and software tools relevant to omics research in systems biology. Finally, we try to answer the question: "What is interpretability?" We introduce views from the interpretable machine learning community and propose a scheme for categorizing studies on omics data. We then apply these tools to review and categorize recent studies where predictive machine learning models have been constructed from non-sequential omics data.
Zobrazit více v PubMed
Abdi H. (2010). Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Comp. Stat. 2, 97–106. 10.1002/WICS.51 DOI
Agrahari S., Singh A. K. (2021). “Concept drift detection in data stream mining : A literature review,” in Journal of King Saud University - Computer and Information Sciences (Amsterdam, Netherlands: Elsevier; ). 10.1016/J.JKSUCI.2021.11.006 DOI
Alakwaa F. M., Chaudhary K., Garmire L. X. (2018). Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J. Proteome Res. 17, 337–347. 10.1021/ACS.JPROTEOME.7B00595 PubMed DOI PMC
Alghamdi N., Chang W., Dang P., Lu X., Wan C., Gampala S., et al. (2021). A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res. 31, 1867–1884. 10.1101/GR.271205.120 PubMed DOI PMC
Andreozzi S., Miskovic L., Hatzimanikatis V. (2016). iSCHRUNK - in silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks. Metab. Eng. 33, 158–168. 10.1016/J.YMBEN.2015.10.002 PubMed DOI
Angermueller C., Pärnamaa T., Parts L., Stegle O. (2016). Deep learning for computational biology. Mol. Syst. Biol. 12, 878. 10.15252/MSB.20156651 PubMed DOI PMC
Asakura T., Date Y., Kikuchi J. (2018). Application of ensemble deep neural network to metabolomics studies. Anal. Chim. Acta 1037, 230–236. 10.1016/J.ACA.2018.02.045 PubMed DOI
Bahado-Singh R. O., Sonek J., McKenna D., Cool D., Aydas B., Turkoglu O., et al. (2019). Artificial intelligence and amniotic fluid multiomics: Prediction of perinatal outcome in asymptomatic women with short cervix. Ultrasound Obstet. Gynecol. 54, 110–118. 10.1002/UOG.20168 PubMed DOI
Barredo Arrieta A., Díaz-Rodríguez N., Del Ser J., Bennetot A., Tabik S., Barbado A., et al. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115. 10.1016/J.INFFUS.2019.12.012 DOI
Bishop C. M. (2006). Pattern recognition and machine learning. New York: Springer. 10.1007/978-0-387-45528-0 DOI
Bommert A., Welchowski T., Schmid M., Rahnenführer J. (2022). Benchmark of filter methods for feature selection in high-dimensional gene expression survival data. Brief. Bioinform. 23, bbab354–13. 10.1093/BIB/BBAB354 PubMed DOI PMC
Bousquet O., Elisseeff A. (2002). Stability and generalization. J. Mach. Learn. Res. 2, 499–526. 10.1162/153244302760200704 DOI
Breiman L. (1996). Bagging predictors. Mach. Learn. 24, 123–140. 10.1007/BF00058655 DOI
Breiman L. (2001). Random forests. Mach. Learn. 45, 5–32. 10.1023/A:1010933404324 DOI
Brereton R. G., Lloyd G. R. (2014). Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 28, 213–225. 10.1002/CEM.2609 DOI
Cai Z., Poulos R. C., Liu J., Zhong Q. (2022). Machine learning for multi-omics data integration in cancer. iScience 25, 103798. 10.1016/J.ISCI.2022.103798 PubMed DOI PMC
Charte D., Charte F., García S., del Jesus M. J., Herrera F. (2018). A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines. Inf. Fusion 44, 78–96. 10.1016/J.INFFUS.2017.12.007 DOI
Chen Z., Pang M., Zhao Z., Li S., Miao R., Zhang Y., et al. (2020). Feature selection may improve deep neural networks for the bioinformatics problems. Bioinformatics 36, 1542–1552. 10.1093/BIOINFORMATICS/BTZ763 PubMed DOI
Chiu Y. C., Chen H. I., Gorthi A., Mostavi M., Zheng S., Huang Y., et al. (2020). Deep learning of pharmacogenomics resources: Moving towards precision oncology. Brief. Bioinform. 21, 2066–2083. 10.1093/BIB/BBZ144 PubMed DOI PMC
Chong J., Xia J. (2018). MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314. 10.1093/BIOINFORMATICS/BTY528 PubMed DOI PMC
Cortes C., Vapnik V., Saitta L. (1995). Support-vector networks. Mach. Learn. 320, 273–297. 10.1007/BF00994018 DOI
Costello Z., Martin H. G. (2018). A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst. Biol. Appl. 4, 19–14. 10.1038/s41540-018-0054-3 PubMed DOI PMC
Culley C., Vijayakumar S., Zampieri G., Angione C. (2020). A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. U. S. A. 117, 18869–18879. 10.1073/pnas.2002959117 PubMed DOI PMC
Date Y., Kikuchi J. (2018). Application of a deep neural network to metabolomics studies and its performance in determining important variables. Anal. Chem. 90, 1805–1810. 10.1021/ACS.ANALCHEM.7B03795 PubMed DOI
Deisenroth M. P., Faisal A. A., Ong C. S. (2020). Mathematics for machine learning. Cambridge, United Kingdom: Cambridge University Press. 10.1017/9781108679930 DOI
Dhamdhere K., Sundararajan M., Yan Q. (2018). How important is a neuron? arXiv . 10.48550/arXiv.1805.12233 DOI
Erhan D., Bengio Y., Courville A., Ca P. A. M., Ca P. V., Com B. (2010). Why does unsupervised pre-training help deep learning? Pierre-antoine manzagol pascal vincent samy bengio. J. Mach. Learn. Res. 11, 625–660. 10.5555/1756006 DOI
Fonville J. M., Richards S. E., Barton R. H., Boulange C. L., Ebbels T. M., Nicholson J. K., et al. (2010). The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J. Chemom. 24, 636–649. 10.1002/CEM.1359 DOI
Forsyth D. (2019). Applied machine learning. Cham: Springer Nature Switzerland. 10.1007/978-3-030-18114-7 DOI
Friedman J. H. (2002). Stochastic gradient boosting. Comput. Statistics Data Analysis 38, 367–378. 10.1016/S0167-9473(01)00065-2 DOI
Gentleman R., Carey V., Huber W., Irizarry R., Dudoit S. (2005). Bioinformatics and computational biology solutions using R and bioconductor, 1. New York: Springer.
Gilmer J., Schoenholz S. S., Riley P. F., Vinyals O., Dahl G. E. (2017). “Neural message passing for quantum chemistry,” in 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia. Editors Precup D., Teh Y. W. (Bookline, MA: JMLR, Inc. and Microtome Publishing; ), 3, 1263–1272.
Gondara L. (2016). Medical image denoising using convolutional denoising autoencoders. IEEE Int. Conf. Data Min. Work. ICDMW 0, 241–246. 10.1109/ICDMW.2016.0041 DOI
Grapov D., Fahrmann J., Wanichthanarak K., Khoomrung S. (2018). Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine. OMICS A J. Integr. Biol. 22, 630–636. 10.1089/omi.2018.0097 PubMed DOI PMC
Guyon I., Elisseeff A. (2006). Feature extraction, 207. Berlin, Heidelberg: Springer. 10.1007/978-3-540-35488-8 DOI
Hanin B. (2019). Universal function approximation by deep neural nets with bounded width and ReLU activations. Mathematics 20197, 992992. 10.3390/MATH7100992 DOI
Hoehenwarter W., Larhlimi A., Hummel J., Egelhofer V., Selbig J., Van Dongen J. T., et al. (2011). MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber. J. Proteome Res. 10, 2979–2991. 10.1021/PR101109A/ASSET/IMAGES/MEDIUM/PR-2010-01109A_0008.GIF PubMed DOI
Hu T., Oksanen K., Zhang W., Randell E., Furey A., Sun G., et al. (2018). An evolutionary learning and network approach to identifying key metabolites for osteoarthritis. PLoS Comput. Biol. 14, e1005986. 10.1371/JOURNAL.PCBI.1005986 PubMed DOI PMC
Isermann R., Münchhof M. (2011). Identification of dynamic systems: An introduction with applications. Berlin, Heidelberg: Springer, 1–705. 10.1007/978-3-540-78879-9 DOI
Jiang T., Gradus J. L., Rosellini A. J. (2020). Supervised machine learning: A brief primer. Behav. Ther. 51, 675–687. 10.1016/J.BETH.2020.05.002 PubMed DOI PMC
Kim M., Rai N., Zorraquino V., Tagkopoulos I. (2016). Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli . Nat. Commun. 7, 13090. 10.1038/ncomms13090 PubMed DOI PMC
Kim M., Tagkopoulos I. (2018). Data integration and predictive modeling methods for multi-omics datasets. Mol. Omics 14, 8–25. 10.1039/C7MO00051K PubMed DOI
Koh H. W., Fermin D., Vogel C., Choi K. P., Ewing R. M., Choi H. (2019). iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. NPJ Syst. Biol. Appl. 5, 22. 10.1038/S41540-019-0099-Y PubMed DOI PMC
Kotsiantis S. B., Kanellopoulos D., Pintelas P. E. (2007). Data preprocessing for supervised leaning. 10.5281/ZENODO.1082415 DOI
Kuhn M., Johnson K. (2019). Feature engineering and selection: A practical approach for predictive models. 1 edn. New York: CRC Press, 1–297. 10.1201/9781315108230 DOI
LeCun Y., Bengio Y., Hinton G. (2015). Deep learning. Nature 521, 436–444. 10.1038/nature14539 PubMed DOI
Leitner M., Fragner L., Danner S., Holeschofsky N., Leitner K., Tischler S., et al. (2017). Combined metabolomic analysis of plasma and urine reveals AHBA, tryptophan and serotonin metabolism as potential risk factors in Gestational Diabetes Mellitus (GDM). Front. Mol. Biosci. 4, 84. 10.3389/FMOLB.2017.00084 PubMed DOI PMC
Lipton Z. C. (2016). The mythos of model interpretability. Commun. ACM 61, 36–43. 10.1145/3233231 DOI
Liu J., Semiz S., Van Der Lee S. J., Van Der Spek A., Verhoeven A., Van Klinken J. B., et al. (2017). Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics 1, 104. 10.1007/s11306-017-1239-2 PubMed DOI PMC
Ljung L. (1998). “System identification,” in Signal analysis and prediction. Editors Prochazka A., Uhlir J., Rayner P. W. J., Kingsbury N. G. (Boston: Birkhäuser; ), 163–173. 10.1007/978-1-4612-1768-8_11 DOI
Loyola-Gonzalez O. (2019). Black-box vs. White-Box: Understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113. 10.1109/ACCESS.2019.2949286 DOI
Mendez K. M., Reinke S. N., David Â., Broadhurst I. (2019). A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Metabolomics 15, 150. 10.1007/s11306-019-1612-4 PubMed DOI PMC
Ma J., Yu M. K., Fong S., Ono K., Sage E., Demchak B., et al. (2018). Using deep learning to model the hierarchical structure and function of a cell. Nat. Methods 15, 290–298. 10.1038/nmeth.4627 PubMed DOI PMC
Maceachern S. J., Forkert N. D. (2021). Machine learning for precision medicine. Genome 64, 416–425.10.1139/GEN-2020-0131/ASSET/IMAGES/LARGE/GEN-2020-0131F1.JPEG PubMed
Macukow B. (2016). “Neural networks-state of art, brief history, basic models and architecture,” in Computer information systems and industrial management. Editors Saeed K., Homenda W. (Cham: Springer; ), 9842, 3–14. 10.1007/978-3-319-45378-1_1 DOI
Manica M., Oskooei A., Born J., Subramanian V., Sáez-Rodríguez J., Martínez M. R. (2019). Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders. Mol. Pharm. 16, 4797–4806. 10.1021/ACS.MOLPHARMACEUT.9B00520 PubMed DOI
Martorell-Marugán J., Siham Tabik S., Benhammou Y., Del Val C., Zwir I., Herrera F., et al. (2019). in Deep learning in omics data analysis and precision medicine. Computational biology. Editor Husi H. (Brisbane City: Exon Publications; ), 37–53. 10.15586/COMPUTATIONALBIOLOGY.2019.CH3 PubMed DOI
Murdoch W. J., Singh C., Kumbier K., Abbasi-Asl R., Yu B. (2019). Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. U. S. A. 116, 22071–22080. 10.1073/PNAS.1900654116 PubMed DOI PMC
Nguyen D. H., Nguyen C. H., Mamitsuka H. (2019). Recent advances and prospects of computational methods for metabolite identification: A review with emphasis on machine learning approaches. Brief. Bioinform. 20, 2028–2043. 10.1093/BIB/BBY066 PubMed DOI PMC
Nguyen N. D., Jin T., Wang D. (2021). Varmole: A biologically drop-connect deep neural network model for prioritizing disease risk variants and genes. Bioinformatics 37, 1772–1775. 10.1093/BIOINFORMATICS/BTAA866 PubMed DOI PMC
Oh J. H., Choi W., Ko E., Kang M., Tannenbaum A., Deasy J. O. (2021). PathCNN: Interpretable convolutional neural networks for survival prediction and pathway analysis applied to glioblastoma. Bioinformatics 37, i443–i450. 10.1093/BIOINFORMATICS/BTAB285 PubMed DOI PMC
Pai S., Hui S., Isserlin R., Shah M. A., Kaka H., Bader G. D. (2019). netDx: interpretable patient classification using integrated patient similarity networks. Mol. Syst. Biol. 15, e8497. 10.15252/MSB.20188497 PubMed DOI PMC
Phillips M., Cataneo R. N., Chaturvedi A., Kaplan P. D., Libardoni M., Mundada M., et al. (2013). Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PloS one 8, e75274. 10.1371/JOURNAL.PONE.0075274 PubMed DOI PMC
Picart-Armada S., Fernández-Albert F., Vinaixa M., Yanes O., Perera-Lluna A. (2018). Fella: an R package to enrich metabolomics data. BMC Bioinforma. 19, 538–539. 10.1186/s12859-018-2487-5 PubMed DOI PMC
Presnell K. V., Alper H. S. (2019). Systems metabolic engineering meets machine learning: A new era for data-driven metabolic engineering. Biotechnol. J. 14, e1800416. 10.1002/BIOT.201800416 PubMed DOI
Reel P. S., Pearson E., Trucco E., Jefferson E. (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv. 49, 107739. 10.1016/J.BIOTECHADV.2021.107739 PubMed DOI
Sabour S., Frosst N., Hinton G. E. (2017). Dynamic routing between capsules. Adv. Neural Inf. Process. Syst., 3857–3867. 10.5555/3294996.3295142 DOI
Schwarzerova J., Bajger A., Pierdou I., Popelinsky L., Sedlar K., Weckwerth W. (2021). “An innovative perspective on metabolomics data analysis in biomedical research using concept drift detection,” in 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX. Editors Huang Y., Kurgan L. A., Luo F., Hu X., Chen Y., Dougherty E. R., et al. (New York City, NY: Institute of Electrical and Electronics Engineers (IEEE)), 3075–3082. 10.1109/BIBM52615.2021.9669418 DOI
Sengupta S., Basak S., Saikia P., Paul S., Tsalavoutis V., Atiah F., et al. (2020). A review of deep learning with special emphasis on architectures, applications and recent trends. Knowledge-Based Syst. 194105596. 10.1016/J.KNOSYS.2020.105596 DOI
Sha C., Cuperlovic-Culf M., Hu T. (2021). Smile: Systems metabolomics using interpretable learning and evolution. BMC Bioinforma. 22, 284. 10.1186/S12859-021-04209-1 PubMed DOI PMC
Shalev-Shwartz S., Ben-David S. (2013). Understanding machine learning: From theory to algorithms, 9781107057135. Cambridge, United Kingdom: Cambridge University Press, 1–397. 10.1017/CBO9781107298019 DOI
Sharma A., Vans E., Shigemizu D., Boroevich K. A., Tsunoda T. (2019). DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. 9, 11399. 10.1038/s41598-019-47765-6 PubMed DOI PMC
Shrestha A., Mahmood A. (2019). Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065. 10.1109/ACCESS.2019.2912200 DOI
Simonoff J. S. (1996). Smoothing methods in statistics. Springer series in statistics. New York: Springer. 10.1007/978-1-4612-4026-6 DOI
Sjöberg J., Zhang Q., Ljung L., Benveniste A., Delyon B., Glorennec P. Y., et al. (1995). Nonlinear black-box modeling in system identification: A unified overview. Automatica 31, 1691–1724. 10.1016/0005-1098(95)00120-8 DOI
Srinath K. (2017). Python–the fastest growing programming language. Int. Res. J. Eng. Technol. (IRJET) 4, 354–357.
Stamate D., Kim M., Proitsi P., Westwood S., Baird A., Nevado-Holgado A., et al. (2019). A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort. Alzheim. Dement. Translat. Res. Clin. Intervent. 5 (1), 933–938. 10.1016/j.trci.2019.11.001 PubMed DOI PMC
Sundararajan M., Taly A., Yan Q. (2017). “Axiomatic attribution for deep networks,” in 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia. Editors Precup D., Teh Y. W. (Bookline, MA: JMLR, Inc. and Microtome Publishing; ), 7, 3319–3328.
Tibshirani R., Hastie T., Narasimhan B., Chu G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. U. S. A. 99, 6567–6572. 10.1073/PNAS.082099299 PubMed DOI PMC
Tibshirani R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288. 10.1111/J.2517-6161.1996.TB02080.X DOI
Torsten Hothorn (2022). CRAN Task View: Machine Learning & Statistical Learning. Version 2022-03-07. Available at: https://CRAN.R-project.org/view=MachineLearning (Accessed June 29, 2022).
Toubiana D., Puzis R., Wen L., Sikron N., Kurmanbayeva A., Soltabayeva A., et al. (2019). Combined network analysis and machine learning allows the prediction of metabolic pathways from tomato metabolomics data. Commun. Biol. 2, 214. 10.1038/s42003-019-0440-4 PubMed DOI PMC
Trainor P. J., de Filippis A. P., Rai S. N. (2017). Evaluation of classifier performance for multiclass phenotype discrimination in untargeted metabolomics. Metabolites 7, E30. 10.3390/METABO7020030 PubMed DOI PMC
van Dooijeweert B., Broeks M. H., van Beers E. J., Verhoeven-Duif N. M., van Solinge W. W., Nieuwenhuis E. E., et al. (2021). Dried blood spot metabolomics reveals a metabolic fingerprint with diagnostic potential for Diamond Blackfan Anaemia. Br. J. Haematol. 193, 1185–1193. 10.1111/BJH.17524 PubMed DOI PMC
Vikalo H., Parvaresh F., Hassibi B. (2007). “On recovery of sparse signals in compressed DNA microarrays,” in Conference Record - Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA (IEEE; ), 693–697. 10.1109/ACSSC.2007.4487303 DOI
Wang L., Miao X., Nie R., Zhang Z., Zhang J., Cai J. (2021). MultiCapsNet: A general framework for data integration and interpretable classification. Front. Genet. 12, 767602. 10.3389/fgene.2021.767602 PubMed DOI PMC
Wang L., Nie R., Yu Z., Xin R., Zheng C., Zhang Z., et al. (2020). An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data. Nat. Mach. Intell. 2, 693–703. 10.1038/s42256-020-00244-4 DOI
Weckwerth W. (2011). Unpredictability of metabolism-the key role of metabolomics science in combination with next-generation genome sequencing. Anal. Bioanal. Chem. 400, 1967–1978. 10.1007/s00216-011-4948-9 PubMed DOI PMC
Wold H. (1975). “Path models with latent variables: The NIPALS approach,” in Quantitative sociology. Editors Blalock H. M., Aganbegian A., Borodkin F. M., Boudon R., Capecchi V. (Cambridge, Massachusetts: Academic Press; ), 307–357. 10.1016/B978-0-12-103950-9.50017-4 DOI
Wolpert D. H., Macready W. G. (1997). No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82. 10.1109/4235.585893 DOI
Wu Z., Pan S., Chen F., Long G., Zhang C., Yu P. S. (2019). A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24. 10.1109/TNNLS.2020.2978386 PubMed DOI
Yang J. H., Wright S. N., Hamblin M., McCloskey D., Alcantar M. A., Schrübbers L., et al. (2019). A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177, 1649–1661. 10.1016/J.CELL.2019.04.016 PubMed DOI PMC
Zhang X., Xing Y., Sun K., Guo Y. (2021). OmiEmbed: A unified multi-task deep learning framework for multi-omics data. Cancers 13, 3047. 10.3390/CANCERS13123047 PubMed DOI PMC
Zhang Z., Zhao Y., Liao X., Shi W., Li K., Zou Q., et al. (2019). Deep learning in omics: A survey and guideline. Brief. Funct. Genomics 18, 41–57. 10.1093/BFGP/ELY030 PubMed DOI
Zhou J., Cui G., Hu S., Zhang Z., Yang C., Liu Z., et al. (2018). Graph neural networks: A review of methods and applications. AI Open 1, 57–81. 10.1016/j.aiopen.2021.01.001 DOI