Energy-saving COVID-19 biomedical plastic waste treatment using the thermal - Catalytic pyrolysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36407968
PubMed Central
PMC9661398
DOI
10.1016/j.energy.2022.126096
PII: S0360-5442(22)02982-6
Knihovny.cz E-zdroje
- Klíčová slova
- Biomedical waste, COVID-19, Energy saving, Facemask, Pyrolysis,
- Publikační typ
- časopisecké články MeSH
The rate of Biomedical waste generation increases exponentially during infectious diseases, such as the SARS-CoV-2 virus, which burst in December 2019 and spread worldwide in a very short time, causing over 6 M casualties worldwide till May 2022. As per the WHO guidelines, the facemask has been used by every person to prevent the infection of the SARS-CoV-2 virus and discarded as biomedical waste. In the present work, a 3-ply facemask was chosen to be treated using the solvent, which was extracted from the different types of waste plastics through the thermal-catalytic pyrolysis process using a novel catalyst. The facemask was dispersed in the solvent in a heating process, followed by dissolution and precipitation of the facemask in the solvent and by filtration of the solid facemask residue out of the solvent. The effect of peak temperature, heating rate, and type of solvent is observed experimentally, and it found that the facemask was dissolved completely with a clear supernate in the solvent extracted from the (polypropylene + poly-ethylene) plastic also saved energy, while the solvent from ABS plastic was not capable to dissolute the facemask. The potential of the presented approach on the global level is also examined.
Department of Mechanical Engineering National Institute of Technology Delhi Delhi 110036
Department of Mechanical Engineering Sardar Vallabhbhai National Institute of Technology 395007
Zobrazit více v PubMed
Hantoko D., Li X., Pariatamby A., Yoshikawa K., Horttanainen M., Yan M. Challenges and practices on waste management and disposal during COVID-19 pandemic. J Environ Manag. 2021;286 doi: 10.1016/j.jenvman.2021.112140. PubMed DOI PMC
Nzediegwu C., Chang S.X. Improper solid waste management increases potential for COVID-19 spread in developing countries. Resour Conserv Recycl. 2020 doi: 10.1016/j.resconrec.2020.104947. PubMed DOI PMC
National Commission on Population under Ministry of Health & Family Welfare, India . July, 2020. Population projections for India and states 2011 – 2036, report of the technical group on population projections.https://main.mohfw.gov.in/sites/default/files/Population%20Projection%20Report%202011-2036%20-%20upload_compressed_0.pdf
Allied Market Research . 2021. Indian surgical masks market.https://www.alliedmarketresearch.com/surgical-mask-market
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health . 2018. NIOSH infographic for the difference between surgical masks and N95 face pieces.https://www.cdc.gov/niosh/npptl/pdfs/UnderstandDifferenceInfographic-508.pdf
Prata J.C., Silva A.L.P., Walker T.R., Duarte A.C., Rocha-Santos T. COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol. 2020;54:7760–7765. doi: 10.1021/acs.est.0c02178. PubMed DOI
Hasan N.A., Heal R.D., Bashar A., Haque M.M. Face masks: protecting the wearer but neglecting the aquatic environment? - a perspective from Bangladesh. Environmental Challenges. 2021;4 doi: 10.1016/j.envc.2021.100126. PubMed DOI PMC
Chen R., Zhang D., Xu X., Yuan Y. Pyrolysis characteristics, kinetics, thermodynamics and volatile products of waste medical surgical mask rope by thermogravimetry and online thermogravimetry-Fourier transform infrared-mass spectrometry analysis. Fuel. 2021;295 doi: 10.1016/j.fuel.2021.120632. DOI
O'Kelly E., Arora A., Pirog S., Ward J., Clarkson P.J. Comparing the fit of N95, KN95, surgical, and cloth face masks and assessing the accuracy of fit checking. PLoS One. 2021;16(1) doi: 10.1371/journal.pone.0245688. PubMed DOI PMC
Kenneth K.W.L., Joussen A.M., Joseph K.C.K., Steel D.H.W. FFP3, FFP2, N95, surgical masks and respirators: what should we be wearing for ophthalmic surgery in the COVID-19 pandemic? Graefes Arch Clin Exp Ophthalmol. 2020;258(8):1587–1589. doi: 10.1007/s00417-020-04751-3. PubMed DOI PMC
Polypropylene: properties, processing, and applications. 2021. https://matmatch.com/learn/material/polypropylene
Low density Polyethylene (LDPE) 2021. https://matmatch.com/materials/mbas004-low-density-polyethylene-ldpe
High density Polyethylene (HDPE) 2021. https://matmatch.com/materials/mbas008- high-density-polyethylene-hdpe
Emmanuel J., Pieper U., Rushbrook P., Ruth S., William T., Susan W. Safe management of wastes from health care activities. Bull World Health Organ. 2001;79(2):171. doi: 10.1590/S0042-96862001000200013. DOI
Thiel M., Veer D., Espinoza-Fuenzalida N.L., Espinoza C., Gallardo C., Hinojosa I.A., Kiessling T., Rojas J., Sanchez A., Sotomayor F., Vasquez N., Villablanca R. COVID lessons from the global south – face masks invading tourist beaches and recommendations for the outdoor seasons. Sci Total Environ. 2021;786 doi: 10.1016/j.scitotenv.2021.147486. DOI
Bondaroff T.P., Cooke S. The impact of COVID-19 on marine plastic pollution. Ocean Asia. 2020 https://oceansasia.org/wp-content/uploads/2020/12/Marine-Plastic-Pollution-FINAL.pdf
Abraham J.P., Plourde B.D., Cheng L. Using heat to kill SARS-CoV-2. Rev Med Virol. 2020;30(5):8–10. doi: 10.1002/rmv.2115. PubMed DOI PMC
Messerle V.E., Mosse A.L., Ustimenko A.B. Processing of biomedical waste in plasma gasifier. Waste Manag. 2018;79:791–799. doi: 10.1016/j.wasman.2018.08.048. PubMed DOI
Ilyas S., Srivastava R.R., Kim H. Disinfect. ion technology and strategies for COVID-19 hospital and bio-medical waste management. Sci Total Environ. 2020;749 doi: 10.1016/j.scitotenv.2020.141652. PubMed DOI PMC
Kumar A., Sagdeo A., Sagdeo P.R. Possibility of using ultraviolet radiation for disinfecting the novel COVID-19. Photodiagnosis Photodyn Ther. 2021;34:2020–2021. doi: 10.1016/j.pdpdt.2021.102234. PubMed DOI PMC
Maher O.A., Kamal S.A., Newir A., Persson K.M. Utilisation of greenhouse effect for the treatment of COVID-19 contaminated disposable waste - a simple technology for developing countries. Int J Hyg Environ Health. 2021;232:17–20. doi: 10.1016/j.ijheh.2021.113690. PubMed DOI PMC
Neto A.G., de Carvalho J.N., Costa da Fonseca J.A., da Costa Carvalho A.M., de Melo Vasconcelos Castro M.M. Microwave medical waste disinfection: a procedure to monitor treatment quality. 2003:63–65. doi: 10.1109/imoc.1999.867043. DOI
Debnath B., Ghosh S., Dutta N. Resource resurgence from COVID-19 waste via pyrolysis: a circular economy approach. Circular Economy and Sustainability. 2021 doi: 10.1007/s43615-021-00104-2. PubMed DOI PMC
Purnomo C.W., Kurniawan W., Aziz M. Technological review on thermochemical conversion of COVID-19-related medical wastes. Resour Conserv Recycl. 2021;167 doi: 10.1016/j.resconrec.2021.105429. PubMed DOI PMC
Central Pollution Control Board . vol. 4. 2020. https://cpcb.nic.in/uploads/Projects/Bio-Medical-Waste/BMW-GUIDELINES-COVID_1.pdf (Guidelines for handling, treatment, and disposal of waste generated during treatment/diagnosis/quarantine of COVID-19 patients).
Tripathi A., Tyagi V.K., Vivekanand V., Bose P., Suthar S. Challenges, opportunities and progress in solid waste management during COVID-19 pandemic. Case Studies in Chemical and Environmental Engineering. 2021;2 doi: 10.1016/j.cscee.2020.100060. PubMed DOI PMC
Fivga A., Dimitriou I. Pyrolysis of plastic waste for production of heavy fuel substitute: a techno-economic assessment. Energy. 2018;149:865–874. doi: 10.1016/j.energy.2018.02.094. DOI
Miranda M., Cabrita I., Pinto F., Gulyurtlu I. Mixtures of rubber tyre and plastic wastes pyrolysis: a kinetic study. Energy. 2018;58:270–282. doi: 10.1016/j.energy.2013.06.033. DOI
Leonas K.K., Jones C.R. The relationship of fabric properties and bacterial filtration efficiency for selected surgical face mask. J Text Appar Technol Manag. 2003;3(2):1–8.
Wang S., Alejandro D.A.R., Kim H., Kim J.Y., Lee Y.R., Nabgan W., et al. Experimental investigation of plastic waste pyrolysis fuel and diesel blends combustion and its flue gas emission analysis in a 5 kW heater. Energy. 2022;247 doi: 10.1016/j.energy.2022.123408. DOI
Park K.B., Choi M.J., Chae D.Y., Jung J., Kim J.S. Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil. Energy. 2022;244(A) doi: 10.1016/j.energy.2021.122583. DOI
Chua M.H., Cheng W., Goh S.S., Kong J., Li B., Lim J.Y.C., et al. Face masks in the New COVID-19 normal: materials. Testing, and Perspectives. 2020 doi: 10.34133/2020/7286735. PubMed DOI PMC
Mahari W.A.W., Chong C.T., Cheng C.K., Lee C.L., Hendrata K., Yek P.N.Y., et al. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy. 2018;162:309–317. doi: 10.1016/j.energy.2018.08.002. DOI
Klemeš J.J., Fan Y.V., Tan R.R., Jiang P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew Sustain Energy Rev. 2020;127 doi: 10.1016/j.rser.2020.109883. PubMed DOI PMC
Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3 doi: 10.1126/sciadv.1700782. PubMed DOI PMC
Ritchie H., Roser M. 2022. Plastic pollution.https://ourworldindata.org/plastic-pollution
Klemeš J.J., Fan Y.V., Jiang P. Plastics: friends or foes? The circularity and plastic waste footprint. Energy Sources, Part A Recovery, Util Environ Eff. 2020;43(13):1549–1565. doi: 10.1080/15567036.2020.1801906. DOI
Zimmermann K. Microwave as an emerging technology for the treatment of biohazardous waste: a mini-review. Waste Manag Res. 2017;35(5):471–479. doi: 10.1177/0734242X16684385. PubMed DOI
Jiang P., Klemeš J.J., Fan Y.V., Fu X., Tan R.R., You S., Foley A.M. Energy, environmental, economic and social equity (4E) pressures of COVID-19 vaccination mismanagement: a global perspective. Energy. 2021 doi: 10.1016/j.energy.2021.121315. PubMed DOI PMC
Gaurav Gajendra, Mehmood Tariq, Cheng Liu, Klemeš Jiří Jaromír, Shrivastava Devesh Kumar. Water hyacinth as a biomass: A review. Journal of Cleaner Production. 2020;277 doi: 10.1016/j.jclepro.2020.122214. DOI