The Impact of Individualized Hemodynamic Management on Intraoperative Fluid Balance and Hemodynamic Interventions during Spine Surgery in the Prone Position: A Prospective Randomized Trial
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu randomizované kontrolované studie, časopisecké články
Grantová podpora
UHHK, 00179906
Ministry of Health, Czech Republic, Cooperatio Program, research area INCA Charles University
PubMed
36422222
PubMed Central
PMC9698539
DOI
10.3390/medicina58111683
PII: medicina58111683
Knihovny.cz E-zdroje
- Klíčová slova
- goal-directed fluid therapy, hemodynamic monitoring, spine surgery, stroke volume, stroke volume variation,
- MeSH
- dospělí MeSH
- hemodynamika * MeSH
- lidé MeSH
- polohování pacienta * MeSH
- pronační poloha MeSH
- prospektivní studie MeSH
- vodní a elektrolytová rovnováha MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
Background and Objectives: The effect of individualized hemodynamic management on the intraoperative use of fluids and other hemodynamic interventions in patients undergoing spinal surgery in the prone position is controversial. This study aimed to evaluate how the use of individualized hemodynamic management based on extended continuous non-invasive hemodynamic monitoring modifies intraoperative hemodynamic interventions compared to conventional hemodynamic monitoring with intermittent non-invasive blood pressure measurements. Methods: Fifty adult patients (American Society of Anesthesiologists physical status I−III) who underwent spinal procedures in the prone position and were then managed with a restrictive fluid strategy were prospectively randomized into intervention and control groups. In the intervention group, individualized hemodynamic management followed a goal-directed protocol based on continuously non-invasively measured blood pressure, heart rate, cardiac output, systemic vascular resistance, and stroke volume variation. In the control group, patients were monitored using intermittent non-invasive blood pressure monitoring, and the choice of hemodynamic intervention was left to the discretion of the attending anesthesiologist. Results: In the intervention group, more hypotensive episodes (3 (2−4) vs. 1 (0−2), p = 0.0001), higher intraoperative dose of ephedrine (0 (0−10) vs. 0 (0−0) mg, p = 0.0008), and more positive fluid balance (680 (510−937) vs. 270 (196−377) ml, p < 0.0001) were recorded. Intraoperative norepinephrine dose and postoperative outcomes did not differ between the groups. Conclusions: Individualized hemodynamic management based on data from extended non-invasive hemodynamic monitoring significantly modified intraoperative hemodynamic management and was associated with a higher number of hemodynamic interventions and a more positive fluid balance.
Zobrazit více v PubMed
Makaryus R., Miller T.E., Gan T.J. Current concepts of fluid management in enhanced recovery pathways. Br. J. Anaesth. 2018;120:376–383. doi: 10.1016/j.bja.2017.10.011. PubMed DOI
Simmons J.W., Dobyns J.B., Paiste J. Enhanced Recovery After Surgery: Intraoperative Fluid Management Strategies. Surg. Clin. N. Am. 2018;98:1185–1200. doi: 10.1016/j.suc.2018.07.006. PubMed DOI
Noel-Morgan J., Muir W.W. Anaesthesia-Associated Relative Hypovolemia: Mechanisms, Monitoring, and Treatment Considerations. Front. Vet. Sci. 2018;5:53. doi: 10.3389/fvets.2018.00053. PubMed DOI PMC
Miller T.E., Myles P.S. Perioperative Fluid Therapy for Major Surgery. Anesthesiology. 2019;130:825–832. doi: 10.1097/ALN.0000000000002603. PubMed DOI
Thacker J.K., Mountford W.K., Ernst F.R., Krukas M.R., Mythen M.M. Perioperative Fluid Utilization Variability and Association With Outcomes: Considerations for Enhanced Recovery Efforts in Sample US Surgical Populations. Ann. Surg. 2016;263:502–510. doi: 10.1097/SLA.0000000000001402. PubMed DOI
Dharmavaram S., Jellish W.S., Nockels R.P., Shea J., Mehmood R., Ghanayem A., Kleinman B., Jacobs W. Effect of prone positioning systems on hemodynamic and cardiac function during lumbar spine surgery: An echocardiographic study. Spine. 2006;31:1388–1393. doi: 10.1097/01.brs.0000218485.96713.44. PubMed DOI
Chui J., Craen R.A. An update on the prone position: Continuing Professional Development. Can. J. Anaesth. 2016;63:737–767. doi: 10.1007/s12630-016-0634-x. PubMed DOI
Yokoyama M., Ueda W., Hirakawa M., Yamamoto H. Hemodynamic effect of the prone position during anesthesia. Acta Anaesthesiol. Scand. 1991;35:741–744. doi: 10.1111/j.1399-6576.1991.tb03382.x. PubMed DOI
Toyota S., Amaki Y. Hemodynamic evaluation of the prone position by transesophageal echocardiography. J. Clin. Anesth. 1998;10:32–35. doi: 10.1016/S0952-8180(97)00216-X. PubMed DOI
Shimizu M., Fujii H., Yamawake N., Nishizaki M. Cardiac function changes with switching from the supine to prone position: Analysis by quantitative semiconductor gated single-photon emission computed tomography. J. Nucl. Cardiol. 2015;22:301–307. doi: 10.1007/s12350-014-0058-3. PubMed DOI
Bacchin M.R., Ceria C.M., Giannone S., Ghisi D., Stagni G., Greggi T., Bonarelli S. Goal-Directed Fluid Therapy Based on Stroke Volume Variation in Patients Undergoing Major Spine Surgery in the Prone Position: A Cohort Study. Spine. 2016;41:E1131–E1137. doi: 10.1097/BRS.0000000000001601. PubMed DOI
Wang D.D., Li Y., Hu X.W., Zhang M.C., Xu X.M., Tang J. Comparison of restrictive fluid therapy with goal-directed fluid therapy for postoperative delirium in patients undergoing spine surgery: A randomized controlled trial. Perioper. Med. 2021;10:48. doi: 10.1186/s13741-021-00220-5. PubMed DOI PMC
Che L., Zhang X.H., Li X., Zhang Y.L., Xu L., Huang Y.G. Outcome impact of individualized fluid management during spine surgery: A before-after prospective comparison study. BMC Anesthesiol. 2020;20:181. doi: 10.1186/s12871-020-01092-w. PubMed DOI PMC
Ameloot K., Palmers P.J., Malbrain M.L. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: A concise review. Curr. Opin. Crit. Care. 2015;21:232–239. doi: 10.1097/MCC.0000000000000198. PubMed DOI
Tanioku T., Yoshida A., Aratani Y., Fujii K., Kawamata T. Validation of noninvasive continuous arterial pressure measurement by ClearSight System™ during induction of anesthesia for cardiovascular surgery. BMC Anesthesiol. 2020;20:176. doi: 10.1186/s12871-020-01091-x. PubMed DOI PMC
Fischer M.O., Joosten A., Desebbe O., Boutros M., Debroczi S., Broch O., Malbrain M.L.N.G., Ameloot K., Hofer C.K., Bubenek-Turconi Ş.I., et al. Interchangeability of cardiac output measurements between noninvasive photoplethysmography and bolus thermodilution: A systematic review and individual patient data meta-analysis. Anaesth. Crit. Care Pain Med. 2020;39:75–85. doi: 10.1016/j.accpm.2019.05.007. PubMed DOI
Boisson M., Poignard M.E., Pontier B., Mimoz O., Debaene B., Frasca D. Cardiac output monitoring with thermodilution pulse-contour analysis vs. noninvasive pulse-contour analysis. Anaesthesia. 2019;74:735–740. doi: 10.1111/anae.14638. PubMed DOI
Watson X., Cecconi M. Haemodynamic monitoring in the peri-operative period: The past, the present and the future. Anaesthesia. 2017;72((Suppl. S1)):7–15. doi: 10.1111/anae.13737. PubMed DOI
Juri T., Suehiro K., Kimura A., Mukai A., Tanaka K., Yamada T., Mori T., Nishikawa K. Impact of continuous noninvasive blood pressure monitoring on hemodynamic fluctuation during general anaesthesia: A randomised controlled study. J. Clin. Monit. Comput. 2018;32:1005–1013. doi: 10.1007/s10877-018-0125-4. PubMed DOI
Meidert A.S., Nold J.S., Hornung R., Paulus A.C., Zwißler B., Czerner S. The impact of continuous noninvasive arterial blood pressure monitoring on blood pressure stability during general anaesthesia in orthopaedic patients: A randomised trial. Eur. J. Anaesthesiol. 2017;34:716–722. doi: 10.1097/EJA.0000000000000690. PubMed DOI
Benes J., Simanova A., Tovarnicka T., Sevcikova S., Kletecka J., Zatloukal J., Pradl R., Chytra I., Kasal E. Continuous noninvasive monitoring improves blood pressure stability in upright position: Randomised controlled trial. J. Clin. Monit. Comput. 2015;29:11–17. doi: 10.1007/s10877-014-9586-2. PubMed DOI
Naylor A.J., Sessler D.I., Maheshwari K., Khanna A.K., Yang D., Mascha E.J., Suleiman I., Reville E.M., Cote D., Hutcherson M.T., et al. Arterial Catheters for Early Detection and Treatment of Hypotension During Major Noncardiac Surgery: A Randomised Trial. Anaesth. Analg. 2020;131:1540–1550. doi: 10.1213/ANE.0000000000004370. PubMed DOI
Saugel B., Sessler D.I. Perioperative Blood Pressure Management. Anesthesiology. 2021;134:250–261. doi: 10.1097/ALN.0000000000003610. PubMed DOI
Corcoran T., Rhodes J.E., Clarke S., Myles P.S., Ho K.M. Perioperative fluid management strategies in major surgery: A stratified meta-analysis. Anesth. Analg. 2012;114:640–651. doi: 10.1213/ANE.0b013e318240d6eb. PubMed DOI
Biais M., Bernard O., Ha J.C., Degryse C., Sztark F. Abilities of pulse pressure variations and stroke volume variations to predict fluid responsiveness in prone position during scoliosis surgery. Br. J. Anaesth. 2010;104:407–413. doi: 10.1093/bja/aeq031. PubMed DOI
Vos J.J., Poterman M., Salm P.P., Van Amsterdam K., Struys M.M., Scheeren T.W., Kalmar A.F. Noninvasive pulse pressure variation and stroke volume variation to predict fluid responsiveness at multiple thresholds: A prospective observational study. Can. J. Anaesth. 2015;62:1153–1160. doi: 10.1007/s12630-015-0464-2. PubMed DOI PMC
Messina A., Montagnini C., Cammarota G., Giuliani F., Muratore L., Baggiani M., Bennett V., Della Corte F., Navalesi P., Cecconi M. Assessment of Fluid Responsiveness in Prone Neurosurgical Patients Undergoing Protective Ventilation: Role of Dynamic Indices, Tidal Volume Challenge, and End-Expiratory Occlusion Test. Anaesth. Analg. 2020;130:752–761. doi: 10.1213/ANE.0000000000004494. PubMed DOI
Watanabe R., Suehiro K., Mukai A., Tanaka K., Yamada T., Mori T., Nishikawa K. Changes in stroke volume induced by lung recruitment maneuver can predict fluid responsiveness during intraoperative lung-protective ventilation in prone position. BMC Anesthesiol. 2021;21:303. doi: 10.1186/s12871-021-01527-y. PubMed DOI PMC
Lima M.F., Mondadori L.A., Chibana A.Y., Gilio D.B., Giroud Joaquim E.H., Michard F. Outcome impact of hemodynamic and depth of anesthesia monitoring during major cancer surgery: A before-after study. J. Clin. Monit. Comput. 2019;33:365–371. doi: 10.1007/s10877-018-0190-8. PubMed DOI
Fellahi J.L., Futier E., Vaisse C., Collange O., Huet O., Loriau J., Gayat E., Tavernier B., Biais M., Asehnoune K., et al. Perioperative hemodynamic optimization: From guidelines to implementation-an experts’ opinion paper. Ann. Intensive Care. 2021;11:58. doi: 10.1186/s13613-021-00845-1. PubMed DOI PMC
Chong M.A., Wang Y., Berbenetz N.M., McConachie I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes? A systematic review and meta-analysis. Eur. J. Anaesthesiol. 2018;35:469–483. doi: 10.1097/EJA.0000000000000778. PubMed DOI