Polymorphisms in genes expressed during amelogenesis and their association with dental caries: a case-control study
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-08-00205
Ministerstvo Zdravotnictví Ceské Republiky
NV17-30439A
Ministerstvo Zdravotnictví Ceské Republiky
No LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy
No. 857560
Horizon 2020 Framework Programme
PubMed
36422720
PubMed Central
PMC10102052
DOI
10.1007/s00784-022-04794-2
PII: 10.1007/s00784-022-04794-2
Knihovny.cz E-zdroje
- Klíčová slova
- Amelogenin, Dental caries, Gene polymorphism, Kallikrein 4, Tooth morphology,
- MeSH
- amelogeneze * genetika MeSH
- amelogenin genetika MeSH
- dítě MeSH
- lidé MeSH
- longitudinální studie MeSH
- studie případů a kontrol MeSH
- zubní kaz * genetika epidemiologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amelogenin MeSH
OBJECTIVES: Dental caries is a widespread multifactorial disease, caused by the demineralization of hard dental tissues. Susceptibility to dental caries is partially genetically conditioned; this study was aimed at finding an association of selected single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in amelogenesis with this disease in children. MATERIALS AND METHODS: In this case-control study, 15 SNPs in ALOX15, AMBN, AMELX, KLK4, TFIP11, and TUFT1 genes were analyzed in 150 children with primary dentition and 611 children with permanent teeth with/without dental caries from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) cohort. RESULTS: Dental caries in primary dentition was associated with SNPs in AMELX (rs17878486) and KLK4 (rs198968, rs2242670), and dental caries in permanent dentition with SNPs in AMELX (rs17878486) and KLK4 (rs2235091, rs2242670, rs2978642), (p ≤ 0.05). No significant differences between cases and controls were observed in the allele or genotype frequencies of any of the selected SNPs in ALOX15, AMBN, TFIP11, and TUFT1 genes (p > 0.05). Some KLK4 haplotypes were associated with dental caries in permanent dentition (p ≤ 0.05). CONCLUSIONS: Based on this study, we found that although the SNPs in AMELX and KLK4 are localized in intronic regions and their functional significance has not yet been determined, they are associated with susceptibility to dental caries in children. CLINICAL RELEVANCE: AMELX and KLK4 variants could be considered in the risk assessment of dental caries, especially in permanent dentition, in the European Caucasian population.
Zobrazit více v PubMed
American Academy of Peadiatric Dentistry. Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies. 2018 [online]. [cit. 20.1.2021] https://www.aapd.org/media/policies_guidelines/p_eccclassifications.pdf PubMed
Skeie MS, Raadal M, Strand GV, Espelid I. The relationship between caries in the primary dentition at 5 years of age and permanent dentition at 10 years of age - a longitudinal study. Int J Paediatr Dent. 2006;16:152–160. doi: 10.1111/j.1365-263X.2006.00720.x. PubMed DOI
Zemaitiene M, Grigalauskiene R, Andruskeviciene V, et al. Dental caries risk indicators in early childhood and their association with caries polarization in adolescence: a cross-sectional study. BMC Oral Health. 2017;17:2. doi: 10.1186/s12903-016-0234-8. PubMed DOI PMC
Wang LJ, Tang R, Bonstein T, et al. Enamel demineralization in primary and permanent teeth. J Dent Res. 2006;85:359–363. doi: 10.1177/154405910608500415. PubMed DOI PMC
Piler P, Kandrnal V, Kukla L, et al. Cohort profile: the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2017;46:1379–1379f. doi: 10.1093/ije/dyw091. PubMed DOI PMC
BorilovaLinhartova P, Deissova T, Kukletova M, Izakovicova Holla L. Matrix metalloproteinases gene variants and dental caries in Czech children. BMC Oral Health. 2020;20:138. doi: 10.1186/s12903-020-01130-6. PubMed DOI PMC
BorilovaLinhartova P, Kastovsky J, Bartosova M, et al. ACE insertion/deletion polymorphism associated with caries in permanent but not primary dentition in Czech children. Caries Res. 2016;50:89–96. doi: 10.1159/000443534. PubMed DOI
Nanci A, TenCate AR. Ten Cate’s oral histology: development, structure, and function. 9. St. Louis: Elsevier; 2018.
Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol Rev. 2017;97:939–993. doi: 10.1152/physrev.00030.2016. PubMed DOI PMC
Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med. 1998;9:128–161. doi: 10.1177/10454411980090020101. PubMed DOI
Avery JK, Chiego DJ. Essentials of oral histology and embryology: a clinical approach. 3. St. Louis: Elsevier Mosby, London; 2006.
Hu JC-C, Chun Y-HP, Al Hazzazzi T, Simmer JP. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs. 2007;186:78–85. doi: 10.1159/000102683. PubMed DOI
He P, Zhang Y, Kim SO, et al. Ameloblast differentiation in the human developing tooth: effects of extracellular matrices. Matrix Biol. 2010;29:411–419. doi: 10.1016/j.matbio.2010.03.001. PubMed DOI PMC
Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci. 2012;17:1996. doi: 10.2741/4034. PubMed DOI PMC
Zhang K, Wang Y, Liu Q, et al. Two single nucleotide polymorphisms in ALOX15 are associated with risk of coronary artery disease in a Chinese Han population. Heart Vessels. 2010;25:368–373. doi: 10.1007/s00380-009-1223-5. PubMed DOI
Yoo J, Lee Y, Kim Y, et al. SNPAnalyzer 2.0: a web-based integrated workbench for linkage disequilibrium analysis and association analysis. BMC Bioinf. 2008;9:290. doi: 10.1186/1471-2105-9-290. PubMed DOI PMC
Gabriel SB. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–2229. doi: 10.1126/science.1069424. PubMed DOI
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. doi: 10.1093/bioinformatics/bth457. PubMed DOI
Luna A, Nicodemus KK. snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics. 2007;23:774–776. doi: 10.1093/bioinformatics/btl657. PubMed DOI
Kumasaka N, Nakamura Y, Kamatani N. The textile plot: a new linkage disequilibrium display of multiple-single nucleotide polymorphism genotype data. PLoS ONE. 2010;5:e10207. doi: 10.1371/journal.pone.0010207. PubMed DOI PMC
Kastovsky J, BorilovaLinhartova P, Musilova K, et al. Lack of association between BMP2/DLX3 gene polymorphisms and dental caries in primary and permanent dentitions. Caries Res. 2017;51:590–595. doi: 10.1159/000479828. PubMed DOI
BorilovaLinhartova P, Deissova T, Musilova K, et al. Lack of association between ENAM gene polymorphism and dental caries in primary and permanent teeth in Czech children. Clin Oral Investig. 2018;22:1873–1877. doi: 10.1007/s00784-017-2280-2. PubMed DOI
Tungare S, Paranjpe AG (2022) Early childhood caries. In: StatPearls. StatPearls Publishing, Treasure Island (FL). NBK535349 PubMed
Kelavkar UP, Badr KF. Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene. Proc Natl Acad Sci. 1999;96:4378–4383. doi: 10.1073/pnas.96.8.4378. PubMed DOI PMC
Kuhn H, Thiele BJ. The diversity of the lipoxygenase family: many sequence data but little information on biological significance. FEBS Lett. 1999;449:7–11. doi: 10.1016/S0014-5793(99)00396-8. PubMed DOI
Serhan CN, Jain A, Marleau S, et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. 2003;171:6856–6865. doi: 10.4049/jimmunol.171.12.6856. PubMed DOI
Klein RF, Allard J, Avnur Z, et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science. 2004;303:229–232. doi: 10.1126/science.1090985. PubMed DOI
Abbasoğlu Z, Tanboğa İ, CalvanoKüchler E, et al. Early childhood caries is associated with genetic variants in enamel formation and immune response genes. Caries Res. 2015;49:70–77. doi: 10.1159/000362825. PubMed DOI PMC
Kelly AM, Bezamat M, Modesto A, Vieira AR. Biomarkers for lifetime caries-free status. J Pers Med. 2020;11:23. doi: 10.3390/jpm11010023. PubMed DOI PMC
Fukumoto S, Kiba T, Hall B, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol. 2004;167:973–983. doi: 10.1083/jcb.200409077. PubMed DOI PMC
PanneerSelvam S, Ponniah I. Expression of ameloblastin in the human tooth germ and ameloblastoma. Oral Dis. 2018;24:1538–1544. doi: 10.1111/odi.12934. PubMed DOI
Wald T, Osickova A, Sulc M, et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by Exon 5. J Biol Chem. 2013;288:22333–22345. doi: 10.1074/jbc.M113.456012. PubMed DOI PMC
Mazumder P, Prajapati S, Bapat R, Moradian-Oldak J. Amelogenin-ameloblastin spatial interaction around maturing enamel rods. J Dent Res. 2016;95:1042–1048. doi: 10.1177/0022034516645389. PubMed DOI PMC
Su J, Chandrababu KB, Moradian-Oldak J. Ameloblastin peptide encoded by exon 5 interacts with amelogenin N-terminus. Biochem Biophys Rep. 2016;7:26–32. doi: 10.1016/j.bbrep.2016.05.007. PubMed DOI PMC
Poulter JA, Murillo G, Brookes SJ, et al. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum Mol Genet. 2014;23:5317–5324. doi: 10.1093/hmg/ddu247. PubMed DOI PMC
Deeley K, Letra A, Rose EK, et al. Possible association of Amelogenin to high caries experience in a Guatemalan-Mayan population. Caries Res. 2008;42:8–13. doi: 10.1159/000111744. PubMed DOI PMC
Li X, Liu D, Sun Y, et al. Association of genetic variants in enamel-formation genes with dental caries: a meta- and gene-cluster analysis. Saudi J Biol Sci. 2021;28:1645–1653. doi: 10.1016/j.sjbs.2020.11.071. PubMed DOI PMC
Gerreth K, Zaorska K, Zabel M, et al. Chosen single nucleotide polymorphisms (SNPs) of enamel formation genes and dental caries in a population of Polish children. Adv Clin Exp Med. 2017;26:899–905. doi: 10.17219/acem/63024. PubMed DOI
Diekwisch T, David S, Bringas P, et al. Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic mouse molar development. Dev Camb Engl. 1993;117:471–482. PubMed
Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol. 1999;126:270–299. doi: 10.1006/jsbi.1999.4130. PubMed DOI
Chen C-L, Bromley KM, Moradian-Oldak J, DeYoreo JJ. In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc. 2011;133:17406–17413. doi: 10.1021/ja206849c. PubMed DOI PMC
Guo J, Lyaruu DM, Takano Y, et al. Amelogenins as potential buffers during secretory-stage amelogenesis. J Dent Res. 2015;94:412–420. doi: 10.1177/0022034514564186. PubMed DOI PMC
Salido EC, Yen PH, Koprivnikar K, et al. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am J Hum Genet. 1992;50:303–316. PubMed PMC
Cho ES, Kim K-J, Lee K-E, et al. Alteration of conserved alternative splicing in AMELX causes enamel defects. J Dent Res. 2014;93:980–987. doi: 10.1177/0022034514547272. PubMed DOI PMC
Lagerström M, Dahl N, Nakahori Y, et al. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1) Genomics. 1991;10:971–975. doi: 10.1016/0888-7543(91)90187-J. PubMed DOI
Wright JT. The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet A. 2006;140A:2547–2555. doi: 10.1002/ajmg.a.31358. PubMed DOI PMC
Smith CEL, Poulter JA, Antanaviciute A, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol. 2017;8:435. doi: 10.3389/fphys.2017.0043. PubMed DOI PMC
Jeremias F, Koruyucu M, Küchler EC, et al. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol. 2013;58:1434–1442. doi: 10.1016/j.archoralbio.2013.05.005. PubMed DOI PMC
Kang S, Yoon I, Lee H, Cho J. Association between AMELX polymorphisms and dental caries in Koreans: AMELX polymorphisms and dental caries in Koreans. Oral Dis. 2011;17:399–406. doi: 10.1111/j.1601-0825.2010.01766.x. PubMed DOI
Ergöz N, Seymen F, Gencay K, et al. Genetic variation in Ameloblastin is associated with caries in asthmatic children. Eur Arch Paediatr Dent. 2014;15:211–216. doi: 10.1007/s40368-013-0096-6. PubMed DOI PMC
Sharifi R, Jahedi S, Mozaffari HR, et al. Association of LTF, ENAM, and AMELX polymorphisms with dental caries susceptibility: a meta-analysis. BMC Oral Health. 2020;20:132. doi: 10.1186/s12903-020-01121-7. PubMed DOI PMC
Patir A, Seymen F, Yildirim M, et al. Enamel formation genes are associated with high caries experience in turkish children. Caries Res. 2008;42:394–400. doi: 10.1159/000154785. PubMed DOI PMC
Lu Y, Papagerakis P, Yamakoshi Y et al (2008) Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem 389:695–700. 10.1515/BC.2008.080 PubMed PMC
Bartlett JD, Simmer JP (2014) Kallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice. Front Physiol 5. 10.3389/fphys.2014.00240 PubMed PMC
Hart PS, Hart TC, Michalec MD, et al. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet. 2004;41:545–549. doi: 10.1136/jmg.2003.017657. PubMed DOI PMC
Wang X, Willing MC, Marazita ML, et al. Genetic and environmental factors associated with dental caries in children: the Iowa Fluoride Study. Caries Res. 2012;46:177–184. doi: 10.1159/000337282. PubMed DOI PMC
Cavallari T, TetuMoyses S, Moyses SJ, Iani Werneck R. KLK4 gene and dental decay: replication in a South Brazilian population. Caries Res. 2017;51:240–243. doi: 10.1159/000464450. PubMed DOI
Paine CT, Paine ML, Luo W, et al. A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. J Biol Chem. 2000;275:22284–22292. doi: 10.1074/jbc.M000118200. PubMed DOI
Deutsch D, Palmon A, Fisher LW, et al. Sequencing of bovine enamelin (“tuftelin”) a novel acidic enamel protein. J Biol Chem. 1991;266:16021–16028. doi: 10.1016/S0021-9258(18)98510-8. PubMed DOI
Luo W, Wen X, Wang H-J, et al. In vivo overexpression of tuftelin in the enamel organic matrix. Cells Tissues Organs. 2004;177:212–220. doi: 10.1159/000080134. PubMed DOI
Slayton RL, Cooper ME, Marazita ML. Tuftelin, mutans streptococci, and dental caries susceptibility. J Dent Res. 2005;84:711–714. doi: 10.1177/154405910508400805. PubMed DOI
Chisini LA, Cademartori MG, Conde MCM, et al. Genes in the pathway of tooth mineral tissues and dental caries risk: a systematic review and meta-analysis. Clin Oral Investig. 2020;24:3723–3738. doi: 10.1007/s00784-019-03146-x. PubMed DOI
Shimizu T, Ho B, Deeley K, et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS ONE. 2012;7:e45022. doi: 10.1371/journal.pone.0045022. PubMed DOI PMC
Shaffer JR, Carlson JC, Stanley BOC, et al. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures. Hum Genet. 2015;134:159–167. doi: 10.1007/s00439-014-1504-7. PubMed DOI PMC
Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci. 1999;96:15173–15177. doi: 10.1073/pnas.96.26.15173. PubMed DOI PMC
Snustad DP, Simmons MJ. Principles of genetics. 5. Hoboken: Wiley; 2009.