Polymorphisms in genes expressed during amelogenesis and their association with dental caries: a case-control study

. 2023 Apr ; 27 (4) : 1681-1695. [epub] 20221124

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36422720

Grantová podpora
NU20-08-00205 Ministerstvo Zdravotnictví Ceské Republiky
NV17-30439A Ministerstvo Zdravotnictví Ceské Republiky
No LM2018121 Ministerstvo Školství, Mládeže a Tělovýchovy
No. 857560 Horizon 2020 Framework Programme

Odkazy

PubMed 36422720
PubMed Central PMC10102052
DOI 10.1007/s00784-022-04794-2
PII: 10.1007/s00784-022-04794-2
Knihovny.cz E-zdroje

OBJECTIVES: Dental caries is a widespread multifactorial disease, caused by the demineralization of hard dental tissues. Susceptibility to dental caries is partially genetically conditioned; this study was aimed at finding an association of selected single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in amelogenesis with this disease in children. MATERIALS AND METHODS: In this case-control study, 15 SNPs in ALOX15, AMBN, AMELX, KLK4, TFIP11, and TUFT1 genes were analyzed in 150 children with primary dentition and 611 children with permanent teeth with/without dental caries from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) cohort. RESULTS: Dental caries in primary dentition was associated with SNPs in AMELX (rs17878486) and KLK4 (rs198968, rs2242670), and dental caries in permanent dentition with SNPs in AMELX (rs17878486) and KLK4 (rs2235091, rs2242670, rs2978642), (p ≤ 0.05). No significant differences between cases and controls were observed in the allele or genotype frequencies of any of the selected SNPs in ALOX15, AMBN, TFIP11, and TUFT1 genes (p > 0.05). Some KLK4 haplotypes were associated with dental caries in permanent dentition (p ≤ 0.05). CONCLUSIONS: Based on this study, we found that although the SNPs in AMELX and KLK4 are localized in intronic regions and their functional significance has not yet been determined, they are associated with susceptibility to dental caries in children. CLINICAL RELEVANCE: AMELX and KLK4 variants could be considered in the risk assessment of dental caries, especially in permanent dentition, in the European Caucasian population.

Zobrazit více v PubMed

American Academy of Peadiatric Dentistry. Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies. 2018 [online]. [cit. 20.1.2021] https://www.aapd.org/media/policies_guidelines/p_eccclassifications.pdf PubMed

Skeie MS, Raadal M, Strand GV, Espelid I. The relationship between caries in the primary dentition at 5 years of age and permanent dentition at 10 years of age - a longitudinal study. Int J Paediatr Dent. 2006;16:152–160. doi: 10.1111/j.1365-263X.2006.00720.x. PubMed DOI

Zemaitiene M, Grigalauskiene R, Andruskeviciene V, et al. Dental caries risk indicators in early childhood and their association with caries polarization in adolescence: a cross-sectional study. BMC Oral Health. 2017;17:2. doi: 10.1186/s12903-016-0234-8. PubMed DOI PMC

Wang LJ, Tang R, Bonstein T, et al. Enamel demineralization in primary and permanent teeth. J Dent Res. 2006;85:359–363. doi: 10.1177/154405910608500415. PubMed DOI PMC

Piler P, Kandrnal V, Kukla L, et al. Cohort profile: the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2017;46:1379–1379f. doi: 10.1093/ije/dyw091. PubMed DOI PMC

BorilovaLinhartova P, Deissova T, Kukletova M, Izakovicova Holla L. Matrix metalloproteinases gene variants and dental caries in Czech children. BMC Oral Health. 2020;20:138. doi: 10.1186/s12903-020-01130-6. PubMed DOI PMC

BorilovaLinhartova P, Kastovsky J, Bartosova M, et al. ACE insertion/deletion polymorphism associated with caries in permanent but not primary dentition in Czech children. Caries Res. 2016;50:89–96. doi: 10.1159/000443534. PubMed DOI

Nanci A, TenCate AR. Ten Cate’s oral histology: development, structure, and function. 9. St. Louis: Elsevier; 2018.

Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol Rev. 2017;97:939–993. doi: 10.1152/physrev.00030.2016. PubMed DOI PMC

Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med. 1998;9:128–161. doi: 10.1177/10454411980090020101. PubMed DOI

Avery JK, Chiego DJ. Essentials of oral histology and embryology: a clinical approach. 3. St. Louis: Elsevier Mosby, London; 2006.

Hu JC-C, Chun Y-HP, Al Hazzazzi T, Simmer JP. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs. 2007;186:78–85. doi: 10.1159/000102683. PubMed DOI

He P, Zhang Y, Kim SO, et al. Ameloblast differentiation in the human developing tooth: effects of extracellular matrices. Matrix Biol. 2010;29:411–419. doi: 10.1016/j.matbio.2010.03.001. PubMed DOI PMC

Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci. 2012;17:1996. doi: 10.2741/4034. PubMed DOI PMC

Zhang K, Wang Y, Liu Q, et al. Two single nucleotide polymorphisms in ALOX15 are associated with risk of coronary artery disease in a Chinese Han population. Heart Vessels. 2010;25:368–373. doi: 10.1007/s00380-009-1223-5. PubMed DOI

Yoo J, Lee Y, Kim Y, et al. SNPAnalyzer 2.0: a web-based integrated workbench for linkage disequilibrium analysis and association analysis. BMC Bioinf. 2008;9:290. doi: 10.1186/1471-2105-9-290. PubMed DOI PMC

Gabriel SB. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–2229. doi: 10.1126/science.1069424. PubMed DOI

Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. doi: 10.1093/bioinformatics/bth457. PubMed DOI

Luna A, Nicodemus KK. snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics. 2007;23:774–776. doi: 10.1093/bioinformatics/btl657. PubMed DOI

Kumasaka N, Nakamura Y, Kamatani N. The textile plot: a new linkage disequilibrium display of multiple-single nucleotide polymorphism genotype data. PLoS ONE. 2010;5:e10207. doi: 10.1371/journal.pone.0010207. PubMed DOI PMC

Kastovsky J, BorilovaLinhartova P, Musilova K, et al. Lack of association between BMP2/DLX3 gene polymorphisms and dental caries in primary and permanent dentitions. Caries Res. 2017;51:590–595. doi: 10.1159/000479828. PubMed DOI

BorilovaLinhartova P, Deissova T, Musilova K, et al. Lack of association between ENAM gene polymorphism and dental caries in primary and permanent teeth in Czech children. Clin Oral Investig. 2018;22:1873–1877. doi: 10.1007/s00784-017-2280-2. PubMed DOI

Tungare S, Paranjpe AG (2022) Early childhood caries. In: StatPearls. StatPearls Publishing, Treasure Island (FL). NBK535349 PubMed

Kelavkar UP, Badr KF. Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene. Proc Natl Acad Sci. 1999;96:4378–4383. doi: 10.1073/pnas.96.8.4378. PubMed DOI PMC

Kuhn H, Thiele BJ. The diversity of the lipoxygenase family: many sequence data but little information on biological significance. FEBS Lett. 1999;449:7–11. doi: 10.1016/S0014-5793(99)00396-8. PubMed DOI

Serhan CN, Jain A, Marleau S, et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. 2003;171:6856–6865. doi: 10.4049/jimmunol.171.12.6856. PubMed DOI

Klein RF, Allard J, Avnur Z, et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science. 2004;303:229–232. doi: 10.1126/science.1090985. PubMed DOI

Abbasoğlu Z, Tanboğa İ, CalvanoKüchler E, et al. Early childhood caries is associated with genetic variants in enamel formation and immune response genes. Caries Res. 2015;49:70–77. doi: 10.1159/000362825. PubMed DOI PMC

Kelly AM, Bezamat M, Modesto A, Vieira AR. Biomarkers for lifetime caries-free status. J Pers Med. 2020;11:23. doi: 10.3390/jpm11010023. PubMed DOI PMC

Fukumoto S, Kiba T, Hall B, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol. 2004;167:973–983. doi: 10.1083/jcb.200409077. PubMed DOI PMC

PanneerSelvam S, Ponniah I. Expression of ameloblastin in the human tooth germ and ameloblastoma. Oral Dis. 2018;24:1538–1544. doi: 10.1111/odi.12934. PubMed DOI

Wald T, Osickova A, Sulc M, et al. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by Exon 5. J Biol Chem. 2013;288:22333–22345. doi: 10.1074/jbc.M113.456012. PubMed DOI PMC

Mazumder P, Prajapati S, Bapat R, Moradian-Oldak J. Amelogenin-ameloblastin spatial interaction around maturing enamel rods. J Dent Res. 2016;95:1042–1048. doi: 10.1177/0022034516645389. PubMed DOI PMC

Su J, Chandrababu KB, Moradian-Oldak J. Ameloblastin peptide encoded by exon 5 interacts with amelogenin N-terminus. Biochem Biophys Rep. 2016;7:26–32. doi: 10.1016/j.bbrep.2016.05.007. PubMed DOI PMC

Poulter JA, Murillo G, Brookes SJ, et al. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum Mol Genet. 2014;23:5317–5324. doi: 10.1093/hmg/ddu247. PubMed DOI PMC

Deeley K, Letra A, Rose EK, et al. Possible association of Amelogenin to high caries experience in a Guatemalan-Mayan population. Caries Res. 2008;42:8–13. doi: 10.1159/000111744. PubMed DOI PMC

Li X, Liu D, Sun Y, et al. Association of genetic variants in enamel-formation genes with dental caries: a meta- and gene-cluster analysis. Saudi J Biol Sci. 2021;28:1645–1653. doi: 10.1016/j.sjbs.2020.11.071. PubMed DOI PMC

Gerreth K, Zaorska K, Zabel M, et al. Chosen single nucleotide polymorphisms (SNPs) of enamel formation genes and dental caries in a population of Polish children. Adv Clin Exp Med. 2017;26:899–905. doi: 10.17219/acem/63024. PubMed DOI

Diekwisch T, David S, Bringas P, et al. Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic mouse molar development. Dev Camb Engl. 1993;117:471–482. PubMed

Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol. 1999;126:270–299. doi: 10.1006/jsbi.1999.4130. PubMed DOI

Chen C-L, Bromley KM, Moradian-Oldak J, DeYoreo JJ. In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc. 2011;133:17406–17413. doi: 10.1021/ja206849c. PubMed DOI PMC

Guo J, Lyaruu DM, Takano Y, et al. Amelogenins as potential buffers during secretory-stage amelogenesis. J Dent Res. 2015;94:412–420. doi: 10.1177/0022034514564186. PubMed DOI PMC

Salido EC, Yen PH, Koprivnikar K, et al. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am J Hum Genet. 1992;50:303–316. PubMed PMC

Cho ES, Kim K-J, Lee K-E, et al. Alteration of conserved alternative splicing in AMELX causes enamel defects. J Dent Res. 2014;93:980–987. doi: 10.1177/0022034514547272. PubMed DOI PMC

Lagerström M, Dahl N, Nakahori Y, et al. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1) Genomics. 1991;10:971–975. doi: 10.1016/0888-7543(91)90187-J. PubMed DOI

Wright JT. The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet A. 2006;140A:2547–2555. doi: 10.1002/ajmg.a.31358. PubMed DOI PMC

Smith CEL, Poulter JA, Antanaviciute A, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol. 2017;8:435. doi: 10.3389/fphys.2017.0043. PubMed DOI PMC

Jeremias F, Koruyucu M, Küchler EC, et al. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol. 2013;58:1434–1442. doi: 10.1016/j.archoralbio.2013.05.005. PubMed DOI PMC

Kang S, Yoon I, Lee H, Cho J. Association between AMELX polymorphisms and dental caries in Koreans: AMELX polymorphisms and dental caries in Koreans. Oral Dis. 2011;17:399–406. doi: 10.1111/j.1601-0825.2010.01766.x. PubMed DOI

Ergöz N, Seymen F, Gencay K, et al. Genetic variation in Ameloblastin is associated with caries in asthmatic children. Eur Arch Paediatr Dent. 2014;15:211–216. doi: 10.1007/s40368-013-0096-6. PubMed DOI PMC

Sharifi R, Jahedi S, Mozaffari HR, et al. Association of LTF, ENAM, and AMELX polymorphisms with dental caries susceptibility: a meta-analysis. BMC Oral Health. 2020;20:132. doi: 10.1186/s12903-020-01121-7. PubMed DOI PMC

Patir A, Seymen F, Yildirim M, et al. Enamel formation genes are associated with high caries experience in turkish children. Caries Res. 2008;42:394–400. doi: 10.1159/000154785. PubMed DOI PMC

Lu Y, Papagerakis P, Yamakoshi Y et al (2008) Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem 389:695–700. 10.1515/BC.2008.080 PubMed PMC

Bartlett JD, Simmer JP (2014) Kallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice. Front Physiol 5. 10.3389/fphys.2014.00240 PubMed PMC

Hart PS, Hart TC, Michalec MD, et al. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet. 2004;41:545–549. doi: 10.1136/jmg.2003.017657. PubMed DOI PMC

Wang X, Willing MC, Marazita ML, et al. Genetic and environmental factors associated with dental caries in children: the Iowa Fluoride Study. Caries Res. 2012;46:177–184. doi: 10.1159/000337282. PubMed DOI PMC

Cavallari T, TetuMoyses S, Moyses SJ, Iani Werneck R. KLK4 gene and dental decay: replication in a South Brazilian population. Caries Res. 2017;51:240–243. doi: 10.1159/000464450. PubMed DOI

Paine CT, Paine ML, Luo W, et al. A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. J Biol Chem. 2000;275:22284–22292. doi: 10.1074/jbc.M000118200. PubMed DOI

Deutsch D, Palmon A, Fisher LW, et al. Sequencing of bovine enamelin (“tuftelin”) a novel acidic enamel protein. J Biol Chem. 1991;266:16021–16028. doi: 10.1016/S0021-9258(18)98510-8. PubMed DOI

Luo W, Wen X, Wang H-J, et al. In vivo overexpression of tuftelin in the enamel organic matrix. Cells Tissues Organs. 2004;177:212–220. doi: 10.1159/000080134. PubMed DOI

Slayton RL, Cooper ME, Marazita ML. Tuftelin, mutans streptococci, and dental caries susceptibility. J Dent Res. 2005;84:711–714. doi: 10.1177/154405910508400805. PubMed DOI

Chisini LA, Cademartori MG, Conde MCM, et al. Genes in the pathway of tooth mineral tissues and dental caries risk: a systematic review and meta-analysis. Clin Oral Investig. 2020;24:3723–3738. doi: 10.1007/s00784-019-03146-x. PubMed DOI

Shimizu T, Ho B, Deeley K, et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS ONE. 2012;7:e45022. doi: 10.1371/journal.pone.0045022. PubMed DOI PMC

Shaffer JR, Carlson JC, Stanley BOC, et al. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures. Hum Genet. 2015;134:159–167. doi: 10.1007/s00439-014-1504-7. PubMed DOI PMC

Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci. 1999;96:15173–15177. doi: 10.1073/pnas.96.26.15173. PubMed DOI PMC

Snustad DP, Simmons MJ. Principles of genetics. 5. Hoboken: Wiley; 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace