Entangling free electrons and optical excitations
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36427323
PubMed Central
PMC9699672
DOI
10.1126/sciadv.abo7853
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The inelastic interaction between flying particles and optical nanocavities gives rise to entangled states in which some excitations of the latter are paired with momentum changes in the former. Specifically, free-electron entanglement with nanocavity modes opens appealing opportunities associated with the strong interaction capabilities of the electrons. However, the achievable degree of entanglement is currently limited by the lack of control over the resulting state mixtures. Here, we propose a scheme to generate pure entanglement between designated optical-cavity excitations and separable free-electron states. We shape the electron wave function profile to select the accessible cavity modes and simultaneously associate them with targeted electron scattering directions. This concept is exemplified through theoretical calculations of free-electron entanglement with degenerate and nondegenerate plasmon modes in silver nanoparticles and atomic vibrations in an inorganic molecule. The generated entanglement can be further propagated through its electron component to extend quantum interactions beyond existing protocols.
Zobrazit více v PubMed
Horodecki R., Horodecki P., Horodecki M., Horodecki K., Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
Togan E., Chu Y., Trifonov A. S., Jiang L., Maze J., Childress L., Dutt M. V. G., Sörensen A. S., Hemmer P. R., Zibrov A. S., Lukin M. D., Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010). PubMed
Kfir O., Entanglements of electrons and cavity photons in the strong-coupling regime. Phys. Rev. Lett. 123, 103602 (2019). PubMed
Di Giulio V., Kociak M., García de Abajo F. J., Probing quantum optical excitations with fast electrons. Optica 6, 1524–1534 (2019).
Reinhardt O., Mechel C., Lynch M., Kaminer I., Free-electron qubits. Ann. Phys. 533, 2000254 (2021).
García de Abajo F. J., Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, 1996).
Egerton R. F., New techniques in electron energy-loss spectroscopy and eneorgy-filtered imaging. Micron 34, 127–139 (2003). PubMed
Erni R., Browning N. D., Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy. Ultramicroscopy 104, 176–192 (2005). PubMed
R. Brydson, Electron Energy Loss Spectroscopy (BIOS Scientific Publishers, 2001).
Krivanek O. L., Lovejoy T. C., Dellby N., Aoki T., Carpenter R. W., Rez P., Soignard E., Zhu J., Batson P. E., Lagos M. J., Egerton R. F., Crozier P. A., Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014). PubMed
Krivanek O. L., Dellby N., Hachtel J. A., Idrobo J.-C., Hotz M. T., Plotkin-Swing B., Bacon N. J., Bleloch A. L., Corbin G. J., Hoffman M. V., Meyer C. E., Lovejoy T. C., Progress in ultrahigh energy resolution EELS. Ultramicroscopy 203, 60–67 (2019). PubMed
García de Abajo F. J., Di Giulio V., Optical excitations with electron beams: Challenges and opportunities. ACS Photonics 8, 945–974 (2021). PubMed PMC
Hage F. S., Radtke G., Kepaptsoglou D. M., Lazzeri M., Ramasse Q. M., Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020). PubMed
Yan X., Liu C., Gadre C. A., Gu L., Aoki T., Lovejoy T. C., Dellby N., Krivanek O. L., Schlom D. G., Wu R., Pan X., Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021). PubMed
Rez P., Aoki T., March K., Gur D., Krivanek O. L., Dellby N., Lovejoy T. C., Wolf S. G., Cohen H., Damage-free vibrational spectroscopy of biological materials in the electron microscope. Nat. Commun. 7, 10945 (2016). PubMed PMC
Haiber D. M., Crozier P. A., Nanoscale probing of local hydrogen heterogeneity in disordered carbon nitrides with vibrational electron energy-loss spectroscopy. ACS Nano 12, 5463–5472 (2018). PubMed
Jokisaari J. R., Hachtel J. A., Hu X., Mukherjee A., Wang C., Konečná A., Lovejoy T. C., Dellby N., Aizpurua J., Krivanek O. L., Idrobo J.-C., Klie R. F., Vibrational spectroscopy of water with high spatial resolution. Adv. Mater. 12, 430–436 (2018). PubMed
Hachtel J. A., Huang J., Popovs I., Jansone-Popova S., Keum J. K., Jakowski J., Lovejoy T. C., Dellby N., Krivanek O. L., Idrobo J. C., Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science 363, 525–528 (2019). PubMed
Bosman M., Keast V. J., Watanabe M., Maaroof A. I., Cortie M. B., Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).
Nelayah J., Kociak M., Stéphan O., García de Abajo F. J., Tencé M., Henrard L., Taverna D., Pastoriza-Santos I., Liz-Marzán L. M., Colliex C., Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).
Rossouw D., Botton G. A., Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys. Rev. Lett. 110, 066801 (2013). PubMed
Tan S. F., Wu L., Yang J. K. W., Bai P., Bosman M., Nijhuis C. A., Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014). PubMed
Mkhitaryan V., March K., Tseng E., Li X., Scarabelli L., Liz-Marzán L. M., Chen S.-Y., Tizei L. H. G., Stéphan O., Song J.-M., Kociak M., García de Abajo F. J., Gloter A., Can copper nanostructures sustain high-quality plasmons? Nano Lett. 21, 2444–2452 (2021). PubMed
Lagos M. J., Trügler A., Hohenester U., Batson P. E., Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529–532 (2017). PubMed
Govyadinov A. A., Konečná A., Chuvilin A., Vélez S., Dolado I., Nikitin A. Y., Lopatin S., Casanova F., Hueso L. E., Aizpurua J., Hillenbrand R., Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017). PubMed PMC
Li N., Guo X., Yang X., Qi R., Qiao T., Li Y., Shi R., Li Y., Liu K., Xu Z., Liu L., García de Abajo F. J., Dai Q., Wang E.-G., Gao P., Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2020). PubMed
Kfir O., Lourenço-Martins H., Storeck G., Sivis M., Harvey T. R., Kippenberg T. J., Feist A., Ropers C., Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020). PubMed
Wang K., Dahan R., Shentcis M., Kauffmann Y., Ben Hayun A., Reinhardt O., Tsesses S., Kaminer I., Coherent interaction between free electrons and a photonic cavity. Nature 582, 50–54 (2020). PubMed
Auad Y., Hamon C., Tencé M., Lourenço-Martins H., Mkhitaryan V., Stéphan O., García de Abajo F. J., Tizei L. H. G., Kociak M., Unveiling the coupling of single metallic nanoparticles to whispering-gallery microcavities. Nano Lett. 22, 319–327 (2022). PubMed
Pettit R. B., Silcox J., Vincent R., Measurement of surface-plasmon dispersion in oxidized aluminum films. Phys. Rev. B 11, 3116–3123 (1975).
Krivanek O. L., Tanishiro Y., Takayanagi K., Yagi K., Electron energy loss spectroscopy in glancing reflection from bulk crystals. Ultramicroscopy 11, 215–222 (1983).
Hage F. S., Nicholls R. J., Yates J. R., McCulloch D. G., Lovejoy T. C., Dellby N., Krivanek O. L., Refson K., Ramasse Q. M., Nanoscale momentum-resolved vibrational spectroscopy. Sci. Adv. 4, eaar7495 (2018). PubMed PMC
Shekhar P., Malac M., Gaind V., Dalili N., Meldrum A., Jacob Z., Momentum-resolved electron energy loss spectroscopy for mapping the photonic density of states. ACS Photonics 4, 1009–1014 (2017).
Mechel C., Kurman Y., Karnieli A., Rivera N., Arie A., Kaminer I., Quantum correlations in electron microscopy. Optica 8, 70–78 (2021).
Y. Adiv, H. Hu, S. Tsesses, R. Dahan, K. Wang, Y. Kurman, A. Gorlach, H. Chen, X. Lin, G. Bartal, I. Kaminer, Observation of 2D Cherenkov radiation, https://arxiv.org/abs/2203.01698 (2022).
Powell C. J., Swan J. B., Origin of the characteristic electron energy losses in aluminum. Phys. Rev. 115, 869–875 (1959).
Schattschneider P., Födermayr F., Su D. S., Coherent double-plasmon excitation in aluminum. Phys. Rev. Lett. 59, 724–727 (1987). PubMed
Batson P. E., Dellby N., Krivanek O. L., Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002). PubMed
Clark L., Béché A., Guzzinati G., Lubk A., Mazilu M., Van Boxem R., Verbeeck J., Exploiting lens aberrations to create electron-vortex beams. Phys. Rev. Lett. 111, 064801 (2013). PubMed
Möllenstedt G., Düker H., Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen. Z. Phys. 145, 377–397 (1956).
Guzzinati G., Beche A., Lourenço-Martins H., Martin J., Kociak M., Verbeeck J., Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017). PubMed PMC
Johnson C. W., Turner A. E., McMorran B. J., Scanning two-grating free electron Mach-Zehnder interferometer. Phys. Rev. Res. 3, 043009 (2021).
Verbeeck J., Tian H., Schattschneider P., Production and application of electron vortex beams. Nature 467, 301–304 (2010). PubMed
McMorran B. J., Agrawal A., Anderson I. M., Herzing A. A., Lezec H. J., McClelland J. J., Unguris J., Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011). PubMed
Verbeeck J., Béché A., Müller-Caspary K., Guzzinati G., Luong M. A., Hertog M. D., Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018). PubMed
Konečná A., García de Abajo F. J., Electron beam aberration correction using optical near fields. Phys. Rev. Lett. 125, 030801 (2020). PubMed
Schwartz O., Axelrod J. J., Campbell S. L., Turnbaugh C., Glaeser R. M., Müller H., Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019). PubMed PMC
García de Abajo F. J., Konečná A., Optical modulation of electron beams in free space. Phys. Rev. Lett. 126, 123901 (2021). PubMed
Mihaila M. C. C., Weber P., Schneller M., Grandits L., Nimmrichter S., Juffmann T., Transverse electron-beam shaping with light. Phys. Rev. X 12, 031043 (2022).
Madan I., Leccese V., Mazur A., Barantani F., LaGrange T., Sapozhnik A., Tengdin P. M., Gargiulo S., Rotunno E., Olaya J.-C., Kaminer I., Grillo V., García de Abajo F. J., Carbone F., Vanacore G. M., Ultrafast transverse modulation of free electrons by interaction with shaped optical fields. ACS Photonics 10, 3215–3224 (2022). PubMed PMC
Aseyev S. A., Ryabov E. A., Mironov B. N., Ischenko A. A., The development of ultrafast electron microscopy. Crystals 10, 452 (2020).
Baum P., Zewail A. H., Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl. Acad. Sci. U.S.A. 104, 18409–18414 (2007). PubMed PMC
Priebe K. E., Rathje C., Yalunin S. V., Hohage T., Feist A., Schäfer S., Ropers C., Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photonics 11, 793–797 (2017).
Morimoto Y., Baum P., Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).
Kfir O., Di Giulio V., García de Abajo F. J., Ropers C., Optical coherence transfer mediated by free electrons. Sci. Adv. 7, eabf6380 (2021). PubMed PMC
Di Giulio V., Kfir O., Ropers C., García de Abajo F. J., Modulation of cathodoluminescence emission by interference with external light. ACS Nano 15, 7290–7304 (2021). PubMed PMC
Uchida M., Tonomura A., Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010). PubMed
Spurgeon S. R., Ophus C., Jones L., Petford-Long A., Kalinin S. V., Olszta M. J., Dunin-Borkowski R. E., Salmon N., Hattar K., Yang W.-C. D., Sharma R., Du Y., Chiaramonti A., Zheng H., Buck E. C., Kovarik L., Penn R. L., Li D., Zhang X., Murayama M., Taheri M. L., Towards data-driven next-generation transmission electron microscopy. Nat. Mater. 20, 274–279 (2021). PubMed PMC
Schmidt F. P., Ditlbacher H., Hofer F., Krenn J. R., Hohenester U., Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. 14, 4810–4815 (2014). PubMed PMC
Ritchie R. H., Howie A., Electron excitation and the optical potential in electron microscopy. Philos. Mag. 36, 463–481 (1977).
Abouraddy A. F., Saleh B. E. A., Sergienko A. V., Teich M. C., Degree of entanglement for two qubits. Phys. Rev. A 64, 050101 (2001).
Konečná A., Iyikanat F., García de Abajo F. J., Theory of atomic-scale vibrational mapping and isotope identification with electron beams. ACS Nano 15, 9890–9899 (2021). PubMed
Bendaña X. M., Polman A., García de Abajo F. J., Single-photon generation by electron beams. Nano Lett. 11, 5099–5103 (2011). PubMed
García de Abajo F. J., Aizpurua J., Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B 56, 15873–15884 (1997).
Boudarham G., Kociak M., Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes. Phys. Rev. B 85, 245447 (2012).
Hohenester U., Trügler A., MNPBEM - A matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).
Saavedra J. R. M., García de Abajo F. J., Phonon excitation by electron beams in nanographenes. Phys. Rev. B 92, 115449 (2015).
Blöchl P. E., Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). PubMed
Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996a). PubMed
Kresse G., Hafner J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). PubMed
Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed