Single-Pixel Imaging in Space and Time with Optically Modulated Free Electrons
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37215321
PubMed Central
PMC10197172
DOI
10.1021/acsphotonics.3c00047
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Single-pixel imaging, originally developed in light optics, facilitates fast three-dimensional sample reconstruction as well as probing with light wavelengths undetectable by conventional multi-pixel detectors. However, the spatial resolution of optics-based single-pixel microscopy is limited by diffraction to hundreds of nanometers. Here, we propose an implementation of single-pixel imaging relying on attainable modifications of currently available ultrafast electron microscopes in which optically modulated electrons are used instead of photons to achieve subnanometer spatially and temporally resolved single-pixel imaging. We simulate electron beam profiles generated by interaction with the optical field produced by an externally programmable spatial light modulator and demonstrate the feasibility of the method by showing that the sample image and its temporal evolution can be reconstructed using realistic imperfect illumination patterns. Electron single-pixel imaging holds strong potential for application in low-dose probing of beam-sensitive biological and molecular samples, including rapid screening during in situ experiments.
Central European Institute of Technology Brno University of Technology 612 00 Brno Czech Republic
Zobrazit více v PubMed
Edgar M. P.; Gibson G. M.; Padgett M. J. Principles and prospects for single-pixel imaging. Nat. Photon. 2019, 13, 13.10.1038/s41566-018-0300-7. DOI
Duarte M. F.; et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. 10.1109/MSP.2007.914730. DOI
Gibson G. M.; Johnson S. D.; Padgett M. J. Single-pixel imaging 12 years on: a review. Opt. Express 2020, 28, 28190–28208. 10.1364/OE.403195. PubMed DOI
Osorio Quero C. A.; Durini D.; Rangel-Magdaleno J.; Martinez-Carranza J. Single-pixel imaging: An overview of different methods to be used for 3D space reconstruction in harsh environments. Rev. Sci. Instrum. 2021, 92, 111501.10.1063/5.0050358. PubMed DOI
Candes E. J.; Romberg J.; Tao T. IEEE Trans. Inf. Theory 2006, 52, 489.10.1109/TIT.2005.862083. DOI
Katz O.; Bromberg Y.; Silberberg Y. Appl. Phys. Lett. 2009, 95, 131110.10.1063/1.3238296. DOI
Kovarik L.; Stevens A.; Liyu A.; Browning N. D. Implementing an accurate and rapid sparse sampling approach for low-dose atomic resolution STEM imaging. Appl. Phys. Lett. 2016, 109, 164102.10.1063/1.4965720. DOI
Schwartz J.; Zheng H.; Hanwell M.; Jiang Y.; Hovden R. Dynamic compressed sensing for real-time tomographic reconstruction. Ultramicroscopy 2020, 219, 11312210.1016/j.ultramic.2020.113122. PubMed DOI
Sun M.-J.; Meng L.-T.; Edgar M. P.; Padgett M. J.; Radwell N. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci. Rep. 2017, 7, 3464.10.1038/s41598-017-03725-6. PubMed DOI PMC
Yu W.-K. Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort. Sensors 2019, 19, 4122.10.3390/s19194122. PubMed DOI PMC
Yu W.-K.; Liu Y.-M. Single-Pixel Imaging with Origami Pattern Construction. Sensors 2019, 19, 5135.10.3390/s19235135. PubMed DOI PMC
Yu X.; Stantchev R. I.; Yang F.; Pickwell-MacPherson E. Super Sub-Nyquist Single-Pixel Imaging by Total Variation Ascending Ordering of the Hadamard Basis. Sci. Rep. 2020, 10, 9338.10.1038/s41598-020-66371-5. PubMed DOI PMC
Higham C. F.; Murray-Smith R.; Padgett M. J.; Edgar M. P. Deep learning for real-time single-pixel video. Sci. Rep. 2018, 8, 2369.10.1038/s41598-018-20521-y. PubMed DOI PMC
Zhang Z.; Li X.; Zheng S.; Yao M.; Zheng G.; Zhong J. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection. Opt. Express 2020, 28, 13269–13278. 10.1364/OE.392370. PubMed DOI
Reed B. W.; Moghadam A. A.; Bloom R. S.; Park S. T.; Monterrosa A. M.; Price P. M.; Barr C. M.; Briggs S. A.; Hattar K.; McKeown J. T.; Masiel D. J. Electrostatic subframing and compressive-sensing video in transmission electron microscopy. Struct. Dyn. 2019, 6, 05430310.1063/1.5115162. PubMed DOI PMC
Shimobaba T.; Endo Y.; Nishitsuji T.; Takahashi T.; Nagahama Y.; Hasegawa S.; Sano M.; Hirayama R.; Kakue T.; Shiraki A.; Ito T. Computational ghost imaging using deep learning. Opt. Commun. 2018, 413, 147.10.1016/j.optcom.2017.12.041. DOI
Lyu M.; Wang W.; Wang H.; Wang H.; Li G.; Chen N.; Situ G. Deep-learning-based ghost imaging Meng Lyu. Sci. Rep. 2017, 7, 17865.10.1038/s41598-017-18171-7. PubMed DOI PMC
He Y.; Gao W.; Dong G.; Zhu S.; Chen H.; Zhang A.; Xu Z. Ghost Imaging Based on Deep Learning. Sci. Rep. 2018, 8, 6469.10.1038/s41598-018-24731-2. PubMed DOI PMC
Wang F.; Wang C.; Deng C.; Han S.; Situ G. Single-pixel imaging using physics enhanced deep learning. Photon. Res. 2022, 10, 104–110. 10.1364/PRJ.440123. DOI
Liu S.; Meng X.; Yin Y.; Wu H.; Jiang W. Computational ghost imaging based on an untrained neural network. Opt. Lasers Eng. 2021, 147, 106744.10.1016/j.optlaseng.2021.106744. DOI
He Y.; Duan S.; Yuan Y.; Chen H.; Li J.; Xu Z. Ghost Imaging Based on Recurrent Neural Network. Opt. Express 2022, 30, 23475–23484. 10.1364/OE.458345. PubMed DOI
Wang F.; Wang H.; Wang H.; Li G.; Situ G. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 2019, 27, 25560–25572. 10.1364/OE.27.025560. PubMed DOI
Wu H.; Wang R.; Zhao G.; Xiao H.; Wang D.; Liang J.; Tian X.; Cheng L.; Zhang X. Ruizhou Wang, Genping Zhao, Huapan Xiao, Daodang Wang, Jian Liang, Xiaobo Tian, Lianglun Cheng, and Xianmin Zhang, Sub-Nyquist computational ghost imaging with deep learning. Opt. Express 2020, 28, 3846–3853. 10.1364/OE.386976. PubMed DOI
Chen Q.; Dwyer C.; Sheng G.; Zhu C.; Li X.; Zheng C.; Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. Adv. Mater. 2020, 32, 1907619.10.1002/adma.201907619. PubMed DOI
Egerton R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 2019, 119, 72–87. 10.1016/j.micron.2019.01.005. PubMed DOI
Li S.; Cropp F.; Kabra K.; Lane T. J.; Wetzstein G.; Musumeci P.; Ratner D. Electron Ghost Imaging. Phys. Rev. Lett. 2018, 121, 11480110.1103/PhysRevLett.121.114801. PubMed DOI
Barwick B.; Flannigan D. J.; Zewail A. H. Photon-induced near-field electron microscopy. Nature 2009, 462, 902–906. 10.1038/nature08662. PubMed DOI
Feist A.; Echternkamp K. E.; Schauss J.; Yalunin S. V.; Schäfer S.; Ropers C. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 2015, 521, 200–203. 10.1038/nature14463. PubMed DOI
Vanacore G. M.; Madan I.; Carbone F. Spatio-temporal shaping of a free-electron wave function via coherent light–electron interaction. La Rivista del Nuovo Cimento 2020, 43, 567–597. 10.1007/s40766-020-00012-5. DOI
Di Giulio V.; Kociak M.; García de Abajo F. J. Probing quantum optical excitations with fast electrons. Optica 2019, 6, 1524–1534. 10.1364/OPTICA.6.001524. DOI
Reinhardt O.; Kaminer I. Theory of shaping electron wavepackets with light. ACS Photon. 2020, 7, 2859.10.1021/acsphotonics.0c01133. DOI
Priebe K. E.; Rathje C.; Yalunin S. V.; Hohage T.; Feist A.; Schäfer S.; Ropers C. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 2017, 11, 793.10.1038/s41566-017-0045-8. DOI
Kozák M.; Schönenberger N.; Hommelhoff P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 2018, 120, 10320310.1103/PhysRevLett.120.103203. PubMed DOI
Morimoto Y.; Baum P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 2018, 14, 252.10.1038/s41567-017-0007-6. DOI
Vanacore G. M.; et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 2018, 9, 2694.10.1038/s41467-018-05021-x. PubMed DOI PMC
Tsarev M.; Ryabov A.; Baum P. Free-electron qubits and maximum-contrast attosecond pulses via temporal Talbot revivals. Phys. Rev. Res. 2021, 3, 04303310.1103/PhysRevResearch.3.043033. DOI
Kealhofer C.; Schneider W.; Ehberger D.; Ryabov A.; Krausz F.; Baum P. All-optical control and metrology of electron pulses. Science 2016, 352, 429.10.1126/science.aae0003. PubMed DOI
Vanacore G. M.; et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 2019, 18, 573–579. 10.1038/s41563-019-0336-1. PubMed DOI
Feist A.; Yalunin S. V.; Schäfer S.; Ropers C. High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Phys. Rev. Research 2020, 2, 04322710.1103/PhysRevResearch.2.043227. DOI
Schwartz O.; Axelrod J. J.; Campbell S. L.; Turnbaugh C.; Glaeser R. M.; Müller H. Laser phase plate for transmission electron microscopy. Nat. Methods 2019, 16, 1016–1020. 10.1038/s41592-019-0552-2. PubMed DOI PMC
Madan I.; Vanacore G. M.; Gargiulo S.; LaGrange T.; Carbone F. The quantum future of microscopy: Wave function engineering of electrons, ions, and nuclei. App. Phys. Lett. 2020, 116, 230502.10.1063/1.5143008. DOI
Konečná A.; Iyikanat F.; García de Abajo F. J. Entangling free electrons and optical excitations. Sci. Adv. 2022, 8, eabo7853.10.1126/sciadv.abo7853. PubMed DOI PMC
Konečná A.; García de Abajo F. J. Electron beam aberration correction using optical near fields. Phys. Rev. Lett. 2020, 125, 03080110.1103/PhysRevLett.125.030801. PubMed DOI
García de Abajo F. J.; Konečná A. Optical modulation of electron beams in free space. Phys. Rev. Lett. 2021, 126, 12390110.1103/PhysRevLett.126.123901. PubMed DOI
Madan I.; Leccese V.; Mazur A.; Barantani F.; LaGrange T.; Sapozhnik A.; Tengdin P. M.; Gargiulo S.; Rotunno E.; Olaya J.-C.; Kaminer I.; Grillo V.; García De F. J.; Carbone F.; Vanacore G. M. Ultrafast Transverse Modulation of Free Electrons by Interaction with Shaped Optical. ACS Photonics 2022, 9, 3215–3224. 10.1021/acsphotonics.2c00850. PubMed DOI PMC
Mihaila M. C. C.; Weber P.; Schneller M.; Grandits L.; Nimmrichter S.; Juffmann T. Transverse Electron Beam Shaping with Light. Phys. Rev. X 2022, 12, 03104310.1103/PhysRevX.12.031043. DOI
Sekia T.; Ikuhara Y.; Shibata N. Theoretical framework of statistical noise in scanning transmission electron microscopy. Ultramicroscopy 2018, 193, 118–125. 10.1016/j.ultramic.2018.06.014. PubMed DOI
Mevenkamp N.; Binev P.; Dahmen W.; Voyles P. M.; Yankovich A. B.; Berkels B. Poisson noise removal from high-resolution STEM images based on periodic block matching. Adv. Struct. Chem. Imaging 2015, 1, 1.10.1186/s40679-015-0004-8. DOI
Kallepalli A.; Viani L.; Stellinga D.; Rotunno E.; Bowman R.; Gibson G. M.; Sun M.-J.; Rosi P.; Frabboni S.; Balboni R.; Migliori A.; Grillo V.; Padgett M. J.. Challenging Point Scanning across Electron Microscopy and Optical Imaging using Computational Imaging. Intell. Comput. 2022, 2022,10.34133/icomputing.0001. DOI
Piazza L.; et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 2015, 6, 6407.10.1038/ncomms7407. PubMed DOI PMC
Madan I.; et al. Holographic imaging of electromagnetic fields via electron-light quantum interference. Sci. Adv. 2019, 5, eaav835810.1126/sciadv.aav8358. PubMed DOI PMC
Morimoto Y.; Baum P. Attosecond control of electron beams at dielectric and absorbing membranes. Phys. Rev. A 2018, 97, 03381510.1103/PhysRevA.97.033815. DOI
Hu X.; Zhang H.; Zhao Q.; Yu P.; Li Y.; Gong L. Hao Zhang, Qian Zhao, Panpan Yu, Yinmei Li, and Lei Gong, Single-pixel phase imaging by Fourier spectrum sampling. Appl. Phys. Lett. 2019, 114, 05110210.1063/1.5087174. DOI
Zhang Z.; Wang X.; Zheng G.; Zhong J. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt. Express 2017, 25, 19619–19639. 10.1364/OE.25.019619. PubMed DOI PMC
Kfir O.; Lourenço-Martins H.; Storeck G.; Sivis M.; Harvey T. R.; Kippenberg T. J.; Feist A.; Ropers C. Controlling free electrons with optical whispering-gallery modes. Nature 2020, 582, 46–49. 10.1038/s41586-020-2320-y. PubMed DOI
Wang K.; Dahan R.; Shentcis M.; Kauffmann Y.; Tsesses S.; Kaminer I. Coherent Interaction between Free Electrons and Cavity Photons. Nature 2020, 582, 50.10.1038/s41586-020-2321-x. PubMed DOI
Dahan R.; Nehemia S.; Shentcis M.; Reinhardt O.; Adiv Y.; Shi X.; Be’er O.; Lynch M. H.; Kurman Y.; Wang K.; Kaminer I. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 2020, 16, 1123–1131. 10.1038/s41567-020-01042-w. DOI
Dahan R.; Gorlach A.; Haeusler U.; Karnieli A.; Eyal O.; Yousefi P.; Segev M.; Arie A.; Eisenstein G.; Hommelhoff P.; Kaminer I. Imprinting the quantum statistics of photons on free electrons. Science 2021, 373, 1309–1310. PubMed
Henke J.-W.; Sajid Raja A.; Feist A.; Huang G.; Arend G.; Yang Y.; Kappert F. J.; Ning Wang R.; Möller M.; Pan J.; Liu J.; Kfir O.; Ropers C.; Kippenberg T. J. Integrated photonics enables continuous-beam electron phase modulation. Nature 2021, 600, 653–658. 10.1038/s41586-021-04197-5. PubMed DOI PMC
Béché A.; Van Boxem R.; Van Tendeloo G.; Verbeeck J. Magnetic monopole field exposed by electrons. Nat. Phys. 2014, 10, 26–29. 10.1038/nphys2816. DOI
Verbeeck J.; Béché A.; Müller-Caspary K.; Guzzinati G.; Luong M. A.; Den Hertog M. Hertog, demonstration of a 2×2 programmable phase plate for electrons. Ultramicroscopy 2018, 190, 58.10.1016/j.ultramic.2018.03.017. PubMed DOI
Pozzi G.; Grillo V.; Lu P.-H.; Tavabi A. H.; Karimi E.; Dunin-Borkowski R. E. Design of electrostatic phase elements for sorting the orbital angular momentum of electrons. Ultramicroscopy 2020, 208, 11286110.1016/j.ultramic.2019.112861. PubMed DOI
Tavabi A. H.; Rosi P.; Rotunno E.; Roncaglia A.; Belsito L.; Frabboni S.; Pozzi G.; Gazzadi G. C.; Lu P.-H.; Nijland R.; Ghosh M.; Tiemeijer P.; Karimi E.; Dunin-Borkowski R. E.; Grillo V. Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams. Phys. Rev. Lett. 2021, 126, 09480210.1103/PhysRevLett.126.094802. PubMed DOI
Schachinger T.; Hartel P.; Lu P.-H.; Löffler S.; Obermair M.; Dries M.; Gerthsen D.; Dunin-Borkowski R. E.; Schattschneider P. Experimental realization of a π/2 vortex mode converter for electrons using a spherical aberration corrector. Ultramicroscopy 2021, 229, 11334010.1016/j.ultramic.2021.113340. PubMed DOI