Single-Pixel Imaging in Space and Time with Optically Modulated Free Electrons

. 2023 May 17 ; 10 (5) : 1463-1472. [epub] 20230419

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37215321

Single-pixel imaging, originally developed in light optics, facilitates fast three-dimensional sample reconstruction as well as probing with light wavelengths undetectable by conventional multi-pixel detectors. However, the spatial resolution of optics-based single-pixel microscopy is limited by diffraction to hundreds of nanometers. Here, we propose an implementation of single-pixel imaging relying on attainable modifications of currently available ultrafast electron microscopes in which optically modulated electrons are used instead of photons to achieve subnanometer spatially and temporally resolved single-pixel imaging. We simulate electron beam profiles generated by interaction with the optical field produced by an externally programmable spatial light modulator and demonstrate the feasibility of the method by showing that the sample image and its temporal evolution can be reconstructed using realistic imperfect illumination patterns. Electron single-pixel imaging holds strong potential for application in low-dose probing of beam-sensitive biological and molecular samples, including rapid screening during in situ experiments.

Zobrazit více v PubMed

Edgar M. P.; Gibson G. M.; Padgett M. J. Principles and prospects for single-pixel imaging. Nat. Photon. 2019, 13, 13.10.1038/s41566-018-0300-7. DOI

Duarte M. F.; et al. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. 10.1109/MSP.2007.914730. DOI

Gibson G. M.; Johnson S. D.; Padgett M. J. Single-pixel imaging 12 years on: a review. Opt. Express 2020, 28, 28190–28208. 10.1364/OE.403195. PubMed DOI

Osorio Quero C. A.; Durini D.; Rangel-Magdaleno J.; Martinez-Carranza J. Single-pixel imaging: An overview of different methods to be used for 3D space reconstruction in harsh environments. Rev. Sci. Instrum. 2021, 92, 111501.10.1063/5.0050358. PubMed DOI

Candes E. J.; Romberg J.; Tao T. IEEE Trans. Inf. Theory 2006, 52, 489.10.1109/TIT.2005.862083. DOI

Katz O.; Bromberg Y.; Silberberg Y. Appl. Phys. Lett. 2009, 95, 131110.10.1063/1.3238296. DOI

Kovarik L.; Stevens A.; Liyu A.; Browning N. D. Implementing an accurate and rapid sparse sampling approach for low-dose atomic resolution STEM imaging. Appl. Phys. Lett. 2016, 109, 164102.10.1063/1.4965720. DOI

Schwartz J.; Zheng H.; Hanwell M.; Jiang Y.; Hovden R. Dynamic compressed sensing for real-time tomographic reconstruction. Ultramicroscopy 2020, 219, 11312210.1016/j.ultramic.2020.113122. PubMed DOI

Sun M.-J.; Meng L.-T.; Edgar M. P.; Padgett M. J.; Radwell N. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci. Rep. 2017, 7, 3464.10.1038/s41598-017-03725-6. PubMed DOI PMC

Yu W.-K. Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort. Sensors 2019, 19, 4122.10.3390/s19194122. PubMed DOI PMC

Yu W.-K.; Liu Y.-M. Single-Pixel Imaging with Origami Pattern Construction. Sensors 2019, 19, 5135.10.3390/s19235135. PubMed DOI PMC

Yu X.; Stantchev R. I.; Yang F.; Pickwell-MacPherson E. Super Sub-Nyquist Single-Pixel Imaging by Total Variation Ascending Ordering of the Hadamard Basis. Sci. Rep. 2020, 10, 9338.10.1038/s41598-020-66371-5. PubMed DOI PMC

Higham C. F.; Murray-Smith R.; Padgett M. J.; Edgar M. P. Deep learning for real-time single-pixel video. Sci. Rep. 2018, 8, 2369.10.1038/s41598-018-20521-y. PubMed DOI PMC

Zhang Z.; Li X.; Zheng S.; Yao M.; Zheng G.; Zhong J. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection. Opt. Express 2020, 28, 13269–13278. 10.1364/OE.392370. PubMed DOI

Reed B. W.; Moghadam A. A.; Bloom R. S.; Park S. T.; Monterrosa A. M.; Price P. M.; Barr C. M.; Briggs S. A.; Hattar K.; McKeown J. T.; Masiel D. J. Electrostatic subframing and compressive-sensing video in transmission electron microscopy. Struct. Dyn. 2019, 6, 05430310.1063/1.5115162. PubMed DOI PMC

Shimobaba T.; Endo Y.; Nishitsuji T.; Takahashi T.; Nagahama Y.; Hasegawa S.; Sano M.; Hirayama R.; Kakue T.; Shiraki A.; Ito T. Computational ghost imaging using deep learning. Opt. Commun. 2018, 413, 147.10.1016/j.optcom.2017.12.041. DOI

Lyu M.; Wang W.; Wang H.; Wang H.; Li G.; Chen N.; Situ G. Deep-learning-based ghost imaging Meng Lyu. Sci. Rep. 2017, 7, 17865.10.1038/s41598-017-18171-7. PubMed DOI PMC

He Y.; Gao W.; Dong G.; Zhu S.; Chen H.; Zhang A.; Xu Z. Ghost Imaging Based on Deep Learning. Sci. Rep. 2018, 8, 6469.10.1038/s41598-018-24731-2. PubMed DOI PMC

Wang F.; Wang C.; Deng C.; Han S.; Situ G. Single-pixel imaging using physics enhanced deep learning. Photon. Res. 2022, 10, 104–110. 10.1364/PRJ.440123. DOI

Liu S.; Meng X.; Yin Y.; Wu H.; Jiang W. Computational ghost imaging based on an untrained neural network. Opt. Lasers Eng. 2021, 147, 106744.10.1016/j.optlaseng.2021.106744. DOI

He Y.; Duan S.; Yuan Y.; Chen H.; Li J.; Xu Z. Ghost Imaging Based on Recurrent Neural Network. Opt. Express 2022, 30, 23475–23484. 10.1364/OE.458345. PubMed DOI

Wang F.; Wang H.; Wang H.; Li G.; Situ G. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 2019, 27, 25560–25572. 10.1364/OE.27.025560. PubMed DOI

Wu H.; Wang R.; Zhao G.; Xiao H.; Wang D.; Liang J.; Tian X.; Cheng L.; Zhang X. Ruizhou Wang, Genping Zhao, Huapan Xiao, Daodang Wang, Jian Liang, Xiaobo Tian, Lianglun Cheng, and Xianmin Zhang, Sub-Nyquist computational ghost imaging with deep learning. Opt. Express 2020, 28, 3846–3853. 10.1364/OE.386976. PubMed DOI

Chen Q.; Dwyer C.; Sheng G.; Zhu C.; Li X.; Zheng C.; Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. Adv. Mater. 2020, 32, 1907619.10.1002/adma.201907619. PubMed DOI

Egerton R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 2019, 119, 72–87. 10.1016/j.micron.2019.01.005. PubMed DOI

Li S.; Cropp F.; Kabra K.; Lane T. J.; Wetzstein G.; Musumeci P.; Ratner D. Electron Ghost Imaging. Phys. Rev. Lett. 2018, 121, 11480110.1103/PhysRevLett.121.114801. PubMed DOI

Barwick B.; Flannigan D. J.; Zewail A. H. Photon-induced near-field electron microscopy. Nature 2009, 462, 902–906. 10.1038/nature08662. PubMed DOI

Feist A.; Echternkamp K. E.; Schauss J.; Yalunin S. V.; Schäfer S.; Ropers C. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 2015, 521, 200–203. 10.1038/nature14463. PubMed DOI

Vanacore G. M.; Madan I.; Carbone F. Spatio-temporal shaping of a free-electron wave function via coherent light–electron interaction. La Rivista del Nuovo Cimento 2020, 43, 567–597. 10.1007/s40766-020-00012-5. DOI

Di Giulio V.; Kociak M.; García de Abajo F. J. Probing quantum optical excitations with fast electrons. Optica 2019, 6, 1524–1534. 10.1364/OPTICA.6.001524. DOI

Reinhardt O.; Kaminer I. Theory of shaping electron wavepackets with light. ACS Photon. 2020, 7, 2859.10.1021/acsphotonics.0c01133. DOI

Priebe K. E.; Rathje C.; Yalunin S. V.; Hohage T.; Feist A.; Schäfer S.; Ropers C. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 2017, 11, 793.10.1038/s41566-017-0045-8. DOI

Kozák M.; Schönenberger N.; Hommelhoff P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 2018, 120, 10320310.1103/PhysRevLett.120.103203. PubMed DOI

Morimoto Y.; Baum P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 2018, 14, 252.10.1038/s41567-017-0007-6. DOI

Vanacore G. M.; et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 2018, 9, 2694.10.1038/s41467-018-05021-x. PubMed DOI PMC

Tsarev M.; Ryabov A.; Baum P. Free-electron qubits and maximum-contrast attosecond pulses via temporal Talbot revivals. Phys. Rev. Res. 2021, 3, 04303310.1103/PhysRevResearch.3.043033. DOI

Kealhofer C.; Schneider W.; Ehberger D.; Ryabov A.; Krausz F.; Baum P. All-optical control and metrology of electron pulses. Science 2016, 352, 429.10.1126/science.aae0003. PubMed DOI

Vanacore G. M.; et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 2019, 18, 573–579. 10.1038/s41563-019-0336-1. PubMed DOI

Feist A.; Yalunin S. V.; Schäfer S.; Ropers C. High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Phys. Rev. Research 2020, 2, 04322710.1103/PhysRevResearch.2.043227. DOI

Schwartz O.; Axelrod J. J.; Campbell S. L.; Turnbaugh C.; Glaeser R. M.; Müller H. Laser phase plate for transmission electron microscopy. Nat. Methods 2019, 16, 1016–1020. 10.1038/s41592-019-0552-2. PubMed DOI PMC

Madan I.; Vanacore G. M.; Gargiulo S.; LaGrange T.; Carbone F. The quantum future of microscopy: Wave function engineering of electrons, ions, and nuclei. App. Phys. Lett. 2020, 116, 230502.10.1063/1.5143008. DOI

Konečná A.; Iyikanat F.; García de Abajo F. J. Entangling free electrons and optical excitations. Sci. Adv. 2022, 8, eabo7853.10.1126/sciadv.abo7853. PubMed DOI PMC

Konečná A.; García de Abajo F. J. Electron beam aberration correction using optical near fields. Phys. Rev. Lett. 2020, 125, 03080110.1103/PhysRevLett.125.030801. PubMed DOI

García de Abajo F. J.; Konečná A. Optical modulation of electron beams in free space. Phys. Rev. Lett. 2021, 126, 12390110.1103/PhysRevLett.126.123901. PubMed DOI

Madan I.; Leccese V.; Mazur A.; Barantani F.; LaGrange T.; Sapozhnik A.; Tengdin P. M.; Gargiulo S.; Rotunno E.; Olaya J.-C.; Kaminer I.; Grillo V.; García De F. J.; Carbone F.; Vanacore G. M. Ultrafast Transverse Modulation of Free Electrons by Interaction with Shaped Optical. ACS Photonics 2022, 9, 3215–3224. 10.1021/acsphotonics.2c00850. PubMed DOI PMC

Mihaila M. C. C.; Weber P.; Schneller M.; Grandits L.; Nimmrichter S.; Juffmann T. Transverse Electron Beam Shaping with Light. Phys. Rev. X 2022, 12, 03104310.1103/PhysRevX.12.031043. DOI

Sekia T.; Ikuhara Y.; Shibata N. Theoretical framework of statistical noise in scanning transmission electron microscopy. Ultramicroscopy 2018, 193, 118–125. 10.1016/j.ultramic.2018.06.014. PubMed DOI

Mevenkamp N.; Binev P.; Dahmen W.; Voyles P. M.; Yankovich A. B.; Berkels B. Poisson noise removal from high-resolution STEM images based on periodic block matching. Adv. Struct. Chem. Imaging 2015, 1, 1.10.1186/s40679-015-0004-8. DOI

Kallepalli A.; Viani L.; Stellinga D.; Rotunno E.; Bowman R.; Gibson G. M.; Sun M.-J.; Rosi P.; Frabboni S.; Balboni R.; Migliori A.; Grillo V.; Padgett M. J.. Challenging Point Scanning across Electron Microscopy and Optical Imaging using Computational Imaging. Intell. Comput. 2022, 2022,10.34133/icomputing.0001. DOI

Piazza L.; et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 2015, 6, 6407.10.1038/ncomms7407. PubMed DOI PMC

Madan I.; et al. Holographic imaging of electromagnetic fields via electron-light quantum interference. Sci. Adv. 2019, 5, eaav835810.1126/sciadv.aav8358. PubMed DOI PMC

Morimoto Y.; Baum P. Attosecond control of electron beams at dielectric and absorbing membranes. Phys. Rev. A 2018, 97, 03381510.1103/PhysRevA.97.033815. DOI

Hu X.; Zhang H.; Zhao Q.; Yu P.; Li Y.; Gong L. Hao Zhang, Qian Zhao, Panpan Yu, Yinmei Li, and Lei Gong, Single-pixel phase imaging by Fourier spectrum sampling. Appl. Phys. Lett. 2019, 114, 05110210.1063/1.5087174. DOI

Zhang Z.; Wang X.; Zheng G.; Zhong J. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt. Express 2017, 25, 19619–19639. 10.1364/OE.25.019619. PubMed DOI PMC

Kfir O.; Lourenço-Martins H.; Storeck G.; Sivis M.; Harvey T. R.; Kippenberg T. J.; Feist A.; Ropers C. Controlling free electrons with optical whispering-gallery modes. Nature 2020, 582, 46–49. 10.1038/s41586-020-2320-y. PubMed DOI

Wang K.; Dahan R.; Shentcis M.; Kauffmann Y.; Tsesses S.; Kaminer I. Coherent Interaction between Free Electrons and Cavity Photons. Nature 2020, 582, 50.10.1038/s41586-020-2321-x. PubMed DOI

Dahan R.; Nehemia S.; Shentcis M.; Reinhardt O.; Adiv Y.; Shi X.; Be’er O.; Lynch M. H.; Kurman Y.; Wang K.; Kaminer I. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 2020, 16, 1123–1131. 10.1038/s41567-020-01042-w. DOI

Dahan R.; Gorlach A.; Haeusler U.; Karnieli A.; Eyal O.; Yousefi P.; Segev M.; Arie A.; Eisenstein G.; Hommelhoff P.; Kaminer I. Imprinting the quantum statistics of photons on free electrons. Science 2021, 373, 1309–1310. PubMed

Henke J.-W.; Sajid Raja A.; Feist A.; Huang G.; Arend G.; Yang Y.; Kappert F. J.; Ning Wang R.; Möller M.; Pan J.; Liu J.; Kfir O.; Ropers C.; Kippenberg T. J. Integrated photonics enables continuous-beam electron phase modulation. Nature 2021, 600, 653–658. 10.1038/s41586-021-04197-5. PubMed DOI PMC

Béché A.; Van Boxem R.; Van Tendeloo G.; Verbeeck J. Magnetic monopole field exposed by electrons. Nat. Phys. 2014, 10, 26–29. 10.1038/nphys2816. DOI

Verbeeck J.; Béché A.; Müller-Caspary K.; Guzzinati G.; Luong M. A.; Den Hertog M. Hertog, demonstration of a 2×2 programmable phase plate for electrons. Ultramicroscopy 2018, 190, 58.10.1016/j.ultramic.2018.03.017. PubMed DOI

Pozzi G.; Grillo V.; Lu P.-H.; Tavabi A. H.; Karimi E.; Dunin-Borkowski R. E. Design of electrostatic phase elements for sorting the orbital angular momentum of electrons. Ultramicroscopy 2020, 208, 11286110.1016/j.ultramic.2019.112861. PubMed DOI

Tavabi A. H.; Rosi P.; Rotunno E.; Roncaglia A.; Belsito L.; Frabboni S.; Pozzi G.; Gazzadi G. C.; Lu P.-H.; Nijland R.; Ghosh M.; Tiemeijer P.; Karimi E.; Dunin-Borkowski R. E.; Grillo V. Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams. Phys. Rev. Lett. 2021, 126, 09480210.1103/PhysRevLett.126.094802. PubMed DOI

Schachinger T.; Hartel P.; Lu P.-H.; Löffler S.; Obermair M.; Dries M.; Gerthsen D.; Dunin-Borkowski R. E.; Schattschneider P. Experimental realization of a π/2 vortex mode converter for electrons using a spherical aberration corrector. Ultramicroscopy 2021, 229, 11334010.1016/j.ultramic.2021.113340. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...