The Immunological Epigenetic Landscape of the Human Life Trajectory
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
207036
COOPERATIO: the scientific project 'Medical Diagnostics and Basic Medical Sciences' (the field 'Medical Genetics')
260531/SVV/2020-2022
Charles University
PubMed
36428462
PubMed Central
PMC9687906
DOI
10.3390/biomedicines10112894
PII: biomedicines10112894
Knihovny.cz E-resources
- Keywords
- ChIP, HLA, PARTICLE, TINA, histone, long non-coding RNA, methylation,
- Publication type
- Journal Article MeSH
Adaptive immunity changes over an individual’s lifetime, maturing by adulthood and diminishing with old age. Epigenetic mechanisms involving DNA and histone methylation form the molecular basis of immunological memory during lymphocyte development. Monocytes alter their function to convey immune tolerance, yet the epigenetic influences at play remain to be fully understood in the context of lifespan. This study of a healthy genetically homogenous cohort of children, adults and seniors sought to decipher the epigenetic dynamics in B-lymphocytes and monocytes. Variable global cytosine methylation within retro-transposable LINE-1 repeats was noted in monocytes compared to B-lymphocytes across age groups. The expression of the human leukocyte antigen (HLA)-DQ alpha chain gene HLA-DQA1*01 revealed significantly reduced levels in monocytes in all ages relative to B-lymphocytes, as well as between lifespan groups. High melting point analysis and bisulfite sequencing of the HLA-DQA1*01 promoter in monocytes highlighted variable cytosine methylation in children and seniors but greater stability at this locus in adults. Further epigenetic evaluation revealed higher histone lysine 27 trimethylation in monocytes from this adult group. Chromatin immunoprecipitation and RNA pulldown demonstrated association with a novel lncRNA TINA with structurally conserved similarities to the previously recognized epigenetic modifier PARTICLE. Seeking to interpret the epigenetic immunological landscape across three representative age groups, this study focused on HLA-DQA1*01 to expose cytosine and histone methylation alterations and their association with the non-coding transcriptome. Such insights unveil previously unknown complex epigenetic layers, orchestrating the strength and weakening of adaptive immunity with the progression of life.
Faculty of Engineering and Science University of Greenwich London Chatham Maritime Kent ME4 4TB UK
Královské Vinohrady University Hospital Vinohrady 10034 Prague Czech Republic
See more in PubMed
Ponnappan S., Ponnappan U. Aging and immune function: Molecular mechanisms to interventions. Antioxid. Redox Signal. 2011;14:1551–1585. doi: 10.1089/ars.2010.3228. PubMed DOI PMC
Montecino-Rodriguez E., Berent-Maoz B., Dorshkind K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 2013;123:958–965. doi: 10.1172/JCI64096. PubMed DOI PMC
Laupeze B., Fardel O., Onno M., Bertho N., Drenou B., Fauchet R., Amiot L. Differential expression of major histocompatibility complex class Ia, Ib, and II molecules on monocytes-derived dendritic and macrophagic cells. Hum. Immunol. 1999;60:591–597. doi: 10.1016/S0198-8859(99)00025-7. PubMed DOI
Hudec M., Riegerova K., Pala J., Kutna V., Cerna M., O’Leary V.B. Celiac Disease Defined by Over-Sensitivity to Gliadin Activation and Superior Antigen Presentation of Dendritic Cells. Int. J. Mol. Sci. 2021;22:9982. doi: 10.3390/ijms22189982. PubMed DOI PMC
Krensky A.M. The HLA system, antigen processing and presentation. Kidney Int. Suppl. 1997;58:S2–S7. PubMed
Hudec M., Juříčková I., Riegerová K., Ovsepian S.V., Černá M., O’Leary V.B. Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease. Int. J. Mol. Sci. 2022;23:6102. doi: 10.3390/ijms23116102. PubMed DOI PMC
Williams F., Meenagh A., Darke C., Acosta A., Daar A.S., Gorodezky C., Hammond M., Nascimento E., Middleton D. Analysis of the distribution of HLA-B alleles in populations from five continents. Hum. Immunol. 2001;62:645–650. doi: 10.1016/S0198-8859(01)00247-6. PubMed DOI
Takata H., Suzuki M., Ishii T., Sekiguchi S., Iri H. Influence of major histocompatibility complex region genes on human longevity among Okinawan-Japanese centenarians and nonagenarians. Lancet. 1987;2:824–826. doi: 10.1016/S0140-6736(87)91015-4. PubMed DOI
Caruso C., Candore G., Colonna Romano G., Lio D., Bonafe M., Valensin S., Franceschi C. HLA, aging, and longevity: A critical reappraisal. Hum. Immunol. 2000;61:942–949. doi: 10.1016/S0198-8859(00)00168-3. PubMed DOI
Franceschi C., Valensin S., Fagnoni F., Barbi C., Bonafe M. Biomarkers of immunosenescence within an evolutionary perspective: The challenge of heterogeneity and the role of antigenic load. Exp. Gerontol. 1999;34:911–921. doi: 10.1016/S0531-5565(99)00068-6. PubMed DOI
Ivanova R., Henon N., Lepage V., Charron D., Vicaut E., Schachter F. HLA-DR alleles display sex-dependent effects on survival and discriminate between individual and familial longevity. Hum. Mol. Genet. 1998;7:187–194. doi: 10.1093/hmg/7.2.187. PubMed DOI
Mays-Hoopes L., Chao W., Butcher H.C., Huang R.C. Decreased methylation of the major mouse long interspersed repeated DNA during aging and in myeloma cells. Dev. Genet. 1986;7:65–73. doi: 10.1002/dvg.1020070202. PubMed DOI
Casillas M.A., Jr., Lopatina N., Andrews L.G., Tollefsbol T.O. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol. Cell. Biochem. 2003;252:33–43. doi: 10.1023/A:1025548623524. PubMed DOI
Liu L., Cheung T.H., Charville G.W., Hurgo B.M., Leavitt T., Shih J., Brunet A., Rando T.A. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 2013;4:189–204. doi: 10.1016/j.celrep.2013.05.043. PubMed DOI PMC
Ni Z., Ebata A., Alipanahiramandi E., Lee S.S. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell. 2012;11:315–325. doi: 10.1111/j.1474-9726.2011.00785.x. PubMed DOI PMC
McCartney D.L., Zhang F., Hillary R.F., Zhang Q., Stevenson A.J., Walker R.M., Bermingham M.L., Boutin T., Morris S.W., Campbell A., et al. An epigenome-wide association study of sex-specific chronological ageing. Genome Med. 2019;12:1. doi: 10.1186/s13073-019-0693-z. PubMed DOI PMC
Gaaib J.N., Nassief A.F., Al-Assi A. Simple salting—Out method for genomic DNA extraction from whole blood. Tikrit J. Pure Sci. 2011;16:9–11.
Zajacova M., Kotrbova-Kozak A., Cepek P., Cerna M. Differences in promoter DNA methylation and mRNA expression of individual alleles of the HLA class II DQA1 gene. Immunol. Lett. 2015;167:147–154. doi: 10.1016/j.imlet.2015.08.006. PubMed DOI
O’Leary V.B., Ovsepian S.V., Carrascosa L.G., Buske F.A., Radulovic V., Niyazi M., Moertl S., Trau M., Atkinson M.J., Anastasov N. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation. Cell Rep. 2015;11:474–485. doi: 10.1016/j.celrep.2015.03.043. PubMed DOI
O’Leary V.B., Hain S., Maugg D., Smida J., Azimzadeh O., Tapio S., Ovsepian S.V., Atkinson M.J. Long non-coding RNA PARTICLE bridges histone and DNA methylation. Sci. Rep. 2017;7:1790. doi: 10.1038/s41598-017-01875-1. PubMed DOI PMC
Gruber A.R., Lorenz R., Bernhart S.H., Neubock R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC
Will S., Joshi T., Hofacker I.L., Stadler P.F., Backofen R. LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. RNA. 2012;18:900–914. doi: 10.1261/rna.029041.111. PubMed DOI PMC
Will S., Reiche K., Hofacker I.L., Stadler P.F., Backofen R. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput. Biol. 2007;3:e65. doi: 10.1371/journal.pcbi.0030065. PubMed DOI PMC
Raden M., Ali S.M., Alkhnbashi O.S., Busch A., Costa F., Davis J.A., Eggenhofer F., Gelhausen R., Georg J., Heyne S., et al. Freiburg RNA tools: A central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018;46:W25–W29. doi: 10.1093/nar/gky329. PubMed DOI PMC
Yoder J.A., Soman N.S., Verdine G.L., Bestor T.H. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol. 1997;270:385–395. doi: 10.1006/jmbi.1997.1125. PubMed DOI
Briggs E.M., Ha S., Mita P., Brittingham G., Sciamanna I., Spadafora C., Logan S.K. Long interspersed nuclear element-1 expression and retrotransposition in prostate cancer cells. Mob. DNA. 2018;9:1. doi: 10.1186/s13100-017-0106-z. PubMed DOI PMC
Brouha B., Schustak J., Badge R.M., Lutz-Prigge S., Farley A.H., Moran J.V., Kazazian H.H., Jr. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA. 2003;100:5280–5285. doi: 10.1073/pnas.0831042100. PubMed DOI PMC
Erichsen L., Beermann A., Arauzo-Bravo M.J., Hassan M., Dkhil M.A., Al-Quraishy S., Hafiz T.A., Fischer J.C., Santourlidis S. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J. Biol. Sci. 2018;25:1220–1226. doi: 10.1016/j.sjbs.2018.02.005. PubMed DOI PMC
Huen K., Calafat A.M., Bradman A., Yousefi P., Eskenazi B., Holland N. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1 and Alu repetitive elements in Mexican-American children. Environ. Res. 2016;148:55–62. doi: 10.1016/j.envres.2016.03.025. PubMed DOI PMC
Zajacova M., Kotrbova-Kozak A., Cerna M. Expression of HLA-DQA1 and HLA-DQB1 genes in B lymphocytes, monocytes and whole blood. Int. J. Immunogenet. 2018;45:128–137. doi: 10.1111/iji.12367. PubMed DOI
Harton J.A., Ting J.P. Class II transactivator: Mastering the art of major histocompatibility complex expression. Mol. Cell. Biol. 2000;20:6185–6194. doi: 10.1128/MCB.20.17.6185-6194.2000. PubMed DOI PMC
Han S., Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012;22:42–49. doi: 10.1016/j.tcb.2011.11.001. PubMed DOI PMC
Patel A.A., Zhang Y., Fullerton J.N., Boelen L., Rongvaux A., Maini A.A., Bigley V., Flavell R.A., Gilroy D.W., Asquith B., et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017;214:1913–1923. doi: 10.1084/jem.20170355. PubMed DOI PMC
Seidler S., Zimmermann H.W., Bartneck M., Trautwein C., Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30. doi: 10.1186/1471-2172-11-30. PubMed DOI PMC
Gorbunova V., Seluanov A., Mita P., McKerrow W., Fenyo D., Boeke J.D., Linker S.B., Gage F.H., Kreiling J.A., Petrashen A.P., et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596:43–53. doi: 10.1038/s41586-021-03542-y. PubMed DOI PMC
Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018;14:576–590. doi: 10.1038/s41574-018-0059-4. PubMed DOI
Issa J.P. Aging and epigenetic drift: A vicious cycle. J. Clin. Investig. 2014;124:24–29. doi: 10.1172/JCI69735. PubMed DOI PMC
Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3:23–35. doi: 10.1038/nri978. PubMed DOI
Bermick J.R., Lambrecht N.J., denDekker A.D., Kunkel S.L., Lukacs N.W., Hogaboam C.M., Schaller M.A. Neonatal monocytes exhibit a unique histone modification landscape. Clin. Epigenetics. 2016;8:99. doi: 10.1186/s13148-016-0265-7. PubMed DOI PMC
Sun D., Luo M., Jeong M., Rodriguez B., Xia Z., Hannah R., Wang H., Le T., Faull K.F., Chen R., et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14:673–688. doi: 10.1016/j.stem.2014.03.002. PubMed DOI PMC
Ma Z., Wang H., Cai Y., Wang H., Niu K., Wu X., Ma H., Yang Y., Tong W., Liu F., et al. Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila. Elife. 2018;7:e35368. doi: 10.7554/eLife.35368. PubMed DOI PMC