• This record comes from PubMed

The Immunological Epigenetic Landscape of the Human Life Trajectory

. 2022 Nov 11 ; 10 (11) : . [epub] 20221111

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
207036 COOPERATIO: the scientific project 'Medical Diagnostics and Basic Medical Sciences' (the field 'Medical Genetics')
260531/SVV/2020-2022 Charles University

Links

PubMed 36428462
PubMed Central PMC9687906
DOI 10.3390/biomedicines10112894
PII: biomedicines10112894
Knihovny.cz E-resources

Adaptive immunity changes over an individual’s lifetime, maturing by adulthood and diminishing with old age. Epigenetic mechanisms involving DNA and histone methylation form the molecular basis of immunological memory during lymphocyte development. Monocytes alter their function to convey immune tolerance, yet the epigenetic influences at play remain to be fully understood in the context of lifespan. This study of a healthy genetically homogenous cohort of children, adults and seniors sought to decipher the epigenetic dynamics in B-lymphocytes and monocytes. Variable global cytosine methylation within retro-transposable LINE-1 repeats was noted in monocytes compared to B-lymphocytes across age groups. The expression of the human leukocyte antigen (HLA)-DQ alpha chain gene HLA-DQA1*01 revealed significantly reduced levels in monocytes in all ages relative to B-lymphocytes, as well as between lifespan groups. High melting point analysis and bisulfite sequencing of the HLA-DQA1*01 promoter in monocytes highlighted variable cytosine methylation in children and seniors but greater stability at this locus in adults. Further epigenetic evaluation revealed higher histone lysine 27 trimethylation in monocytes from this adult group. Chromatin immunoprecipitation and RNA pulldown demonstrated association with a novel lncRNA TINA with structurally conserved similarities to the previously recognized epigenetic modifier PARTICLE. Seeking to interpret the epigenetic immunological landscape across three representative age groups, this study focused on HLA-DQA1*01 to expose cytosine and histone methylation alterations and their association with the non-coding transcriptome. Such insights unveil previously unknown complex epigenetic layers, orchestrating the strength and weakening of adaptive immunity with the progression of life.

See more in PubMed

Ponnappan S., Ponnappan U. Aging and immune function: Molecular mechanisms to interventions. Antioxid. Redox Signal. 2011;14:1551–1585. doi: 10.1089/ars.2010.3228. PubMed DOI PMC

Montecino-Rodriguez E., Berent-Maoz B., Dorshkind K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 2013;123:958–965. doi: 10.1172/JCI64096. PubMed DOI PMC

Laupeze B., Fardel O., Onno M., Bertho N., Drenou B., Fauchet R., Amiot L. Differential expression of major histocompatibility complex class Ia, Ib, and II molecules on monocytes-derived dendritic and macrophagic cells. Hum. Immunol. 1999;60:591–597. doi: 10.1016/S0198-8859(99)00025-7. PubMed DOI

Hudec M., Riegerova K., Pala J., Kutna V., Cerna M., O’Leary V.B. Celiac Disease Defined by Over-Sensitivity to Gliadin Activation and Superior Antigen Presentation of Dendritic Cells. Int. J. Mol. Sci. 2021;22:9982. doi: 10.3390/ijms22189982. PubMed DOI PMC

Krensky A.M. The HLA system, antigen processing and presentation. Kidney Int. Suppl. 1997;58:S2–S7. PubMed

Hudec M., Juříčková I., Riegerová K., Ovsepian S.V., Černá M., O’Leary V.B. Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease. Int. J. Mol. Sci. 2022;23:6102. doi: 10.3390/ijms23116102. PubMed DOI PMC

Williams F., Meenagh A., Darke C., Acosta A., Daar A.S., Gorodezky C., Hammond M., Nascimento E., Middleton D. Analysis of the distribution of HLA-B alleles in populations from five continents. Hum. Immunol. 2001;62:645–650. doi: 10.1016/S0198-8859(01)00247-6. PubMed DOI

Takata H., Suzuki M., Ishii T., Sekiguchi S., Iri H. Influence of major histocompatibility complex region genes on human longevity among Okinawan-Japanese centenarians and nonagenarians. Lancet. 1987;2:824–826. doi: 10.1016/S0140-6736(87)91015-4. PubMed DOI

Caruso C., Candore G., Colonna Romano G., Lio D., Bonafe M., Valensin S., Franceschi C. HLA, aging, and longevity: A critical reappraisal. Hum. Immunol. 2000;61:942–949. doi: 10.1016/S0198-8859(00)00168-3. PubMed DOI

Franceschi C., Valensin S., Fagnoni F., Barbi C., Bonafe M. Biomarkers of immunosenescence within an evolutionary perspective: The challenge of heterogeneity and the role of antigenic load. Exp. Gerontol. 1999;34:911–921. doi: 10.1016/S0531-5565(99)00068-6. PubMed DOI

Ivanova R., Henon N., Lepage V., Charron D., Vicaut E., Schachter F. HLA-DR alleles display sex-dependent effects on survival and discriminate between individual and familial longevity. Hum. Mol. Genet. 1998;7:187–194. doi: 10.1093/hmg/7.2.187. PubMed DOI

Mays-Hoopes L., Chao W., Butcher H.C., Huang R.C. Decreased methylation of the major mouse long interspersed repeated DNA during aging and in myeloma cells. Dev. Genet. 1986;7:65–73. doi: 10.1002/dvg.1020070202. PubMed DOI

Casillas M.A., Jr., Lopatina N., Andrews L.G., Tollefsbol T.O. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol. Cell. Biochem. 2003;252:33–43. doi: 10.1023/A:1025548623524. PubMed DOI

Liu L., Cheung T.H., Charville G.W., Hurgo B.M., Leavitt T., Shih J., Brunet A., Rando T.A. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 2013;4:189–204. doi: 10.1016/j.celrep.2013.05.043. PubMed DOI PMC

Ni Z., Ebata A., Alipanahiramandi E., Lee S.S. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell. 2012;11:315–325. doi: 10.1111/j.1474-9726.2011.00785.x. PubMed DOI PMC

McCartney D.L., Zhang F., Hillary R.F., Zhang Q., Stevenson A.J., Walker R.M., Bermingham M.L., Boutin T., Morris S.W., Campbell A., et al. An epigenome-wide association study of sex-specific chronological ageing. Genome Med. 2019;12:1. doi: 10.1186/s13073-019-0693-z. PubMed DOI PMC

Gaaib J.N., Nassief A.F., Al-Assi A. Simple salting—Out method for genomic DNA extraction from whole blood. Tikrit J. Pure Sci. 2011;16:9–11.

Zajacova M., Kotrbova-Kozak A., Cepek P., Cerna M. Differences in promoter DNA methylation and mRNA expression of individual alleles of the HLA class II DQA1 gene. Immunol. Lett. 2015;167:147–154. doi: 10.1016/j.imlet.2015.08.006. PubMed DOI

O’Leary V.B., Ovsepian S.V., Carrascosa L.G., Buske F.A., Radulovic V., Niyazi M., Moertl S., Trau M., Atkinson M.J., Anastasov N. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation. Cell Rep. 2015;11:474–485. doi: 10.1016/j.celrep.2015.03.043. PubMed DOI

O’Leary V.B., Hain S., Maugg D., Smida J., Azimzadeh O., Tapio S., Ovsepian S.V., Atkinson M.J. Long non-coding RNA PARTICLE bridges histone and DNA methylation. Sci. Rep. 2017;7:1790. doi: 10.1038/s41598-017-01875-1. PubMed DOI PMC

Gruber A.R., Lorenz R., Bernhart S.H., Neubock R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC

Will S., Joshi T., Hofacker I.L., Stadler P.F., Backofen R. LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. RNA. 2012;18:900–914. doi: 10.1261/rna.029041.111. PubMed DOI PMC

Will S., Reiche K., Hofacker I.L., Stadler P.F., Backofen R. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput. Biol. 2007;3:e65. doi: 10.1371/journal.pcbi.0030065. PubMed DOI PMC

Raden M., Ali S.M., Alkhnbashi O.S., Busch A., Costa F., Davis J.A., Eggenhofer F., Gelhausen R., Georg J., Heyne S., et al. Freiburg RNA tools: A central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018;46:W25–W29. doi: 10.1093/nar/gky329. PubMed DOI PMC

Yoder J.A., Soman N.S., Verdine G.L., Bestor T.H. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol. 1997;270:385–395. doi: 10.1006/jmbi.1997.1125. PubMed DOI

Briggs E.M., Ha S., Mita P., Brittingham G., Sciamanna I., Spadafora C., Logan S.K. Long interspersed nuclear element-1 expression and retrotransposition in prostate cancer cells. Mob. DNA. 2018;9:1. doi: 10.1186/s13100-017-0106-z. PubMed DOI PMC

Brouha B., Schustak J., Badge R.M., Lutz-Prigge S., Farley A.H., Moran J.V., Kazazian H.H., Jr. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA. 2003;100:5280–5285. doi: 10.1073/pnas.0831042100. PubMed DOI PMC

Erichsen L., Beermann A., Arauzo-Bravo M.J., Hassan M., Dkhil M.A., Al-Quraishy S., Hafiz T.A., Fischer J.C., Santourlidis S. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J. Biol. Sci. 2018;25:1220–1226. doi: 10.1016/j.sjbs.2018.02.005. PubMed DOI PMC

Huen K., Calafat A.M., Bradman A., Yousefi P., Eskenazi B., Holland N. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1 and Alu repetitive elements in Mexican-American children. Environ. Res. 2016;148:55–62. doi: 10.1016/j.envres.2016.03.025. PubMed DOI PMC

Zajacova M., Kotrbova-Kozak A., Cerna M. Expression of HLA-DQA1 and HLA-DQB1 genes in B lymphocytes, monocytes and whole blood. Int. J. Immunogenet. 2018;45:128–137. doi: 10.1111/iji.12367. PubMed DOI

Harton J.A., Ting J.P. Class II transactivator: Mastering the art of major histocompatibility complex expression. Mol. Cell. Biol. 2000;20:6185–6194. doi: 10.1128/MCB.20.17.6185-6194.2000. PubMed DOI PMC

Han S., Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012;22:42–49. doi: 10.1016/j.tcb.2011.11.001. PubMed DOI PMC

Patel A.A., Zhang Y., Fullerton J.N., Boelen L., Rongvaux A., Maini A.A., Bigley V., Flavell R.A., Gilroy D.W., Asquith B., et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017;214:1913–1923. doi: 10.1084/jem.20170355. PubMed DOI PMC

Seidler S., Zimmermann H.W., Bartneck M., Trautwein C., Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol. 2010;11:30. doi: 10.1186/1471-2172-11-30. PubMed DOI PMC

Gorbunova V., Seluanov A., Mita P., McKerrow W., Fenyo D., Boeke J.D., Linker S.B., Gage F.H., Kreiling J.A., Petrashen A.P., et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596:43–53. doi: 10.1038/s41586-021-03542-y. PubMed DOI PMC

Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018;14:576–590. doi: 10.1038/s41574-018-0059-4. PubMed DOI

Issa J.P. Aging and epigenetic drift: A vicious cycle. J. Clin. Investig. 2014;124:24–29. doi: 10.1172/JCI69735. PubMed DOI PMC

Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3:23–35. doi: 10.1038/nri978. PubMed DOI

Bermick J.R., Lambrecht N.J., denDekker A.D., Kunkel S.L., Lukacs N.W., Hogaboam C.M., Schaller M.A. Neonatal monocytes exhibit a unique histone modification landscape. Clin. Epigenetics. 2016;8:99. doi: 10.1186/s13148-016-0265-7. PubMed DOI PMC

Sun D., Luo M., Jeong M., Rodriguez B., Xia Z., Hannah R., Wang H., Le T., Faull K.F., Chen R., et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14:673–688. doi: 10.1016/j.stem.2014.03.002. PubMed DOI PMC

Ma Z., Wang H., Cai Y., Wang H., Niu K., Wu X., Ma H., Yang Y., Tong W., Liu F., et al. Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila. Elife. 2018;7:e35368. doi: 10.7554/eLife.35368. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...