Celiac Disease Defined by Over-Sensitivity to Gliadin Activation and Superior Antigen Presentation of Dendritic Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
260531/SVV/2020:
PROGRES Q 36 - Metabolism, and 260531/SVV/2020: Multidisciplinary research of the regulation mechanisms of human metabolism.
PubMed
34576145
PubMed Central
PMC8469067
DOI
10.3390/ijms22189982
PII: ijms22189982
Knihovny.cz E-zdroje
- Klíčová slova
- CD33, CD64, CD86, MHCDQ, autoimmunity, major histocompatibility complex II, monocyte, monocyte-derived dendritic cells,
- MeSH
- autoimunitní nemoci imunologie MeSH
- biologické markery metabolismus MeSH
- buněčná membrána metabolismus MeSH
- CD antigeny metabolismus MeSH
- celiakie epidemiologie imunologie MeSH
- cytotoxické T-lymfocyty imunologie MeSH
- dendritické buňky imunologie MeSH
- dospělí MeSH
- gliadin škodlivé účinky MeSH
- HLA-DQ antigeny metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipopolysacharidy MeSH
- mladiství MeSH
- mladý dospělý MeSH
- monocyty metabolismus MeSH
- náchylnost k nemoci MeSH
- prezentace antigenu imunologie MeSH
- rodina MeSH
- rodokmen MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- biologické markery MeSH
- CD antigeny MeSH
- gliadin MeSH
- HLA-DQ antigeny MeSH
- lipopolysacharidy MeSH
The autoimmune condition, Celiac Disease (CeD), displays broad clinical symptoms due to gluten exposure. Its genetic association with DQ variants in the human leukocyte antigen (HLA) system has been recognised. Monocyte-derived mature dendritic cells (MoDCs) present gluten peptides through HLA-DQ and co-stimulatory molecules to T lymphocytes, eliciting a cytokine-rich microenvironment. Having access to CeD associated families prevalent in the Czech Republic, this study utilised an in vitro model to investigate their differential monocyte profile. The higher monocyte yields isolated from PBMCs of CeD patients versus control individuals also reflected the greater proportion of dendritic cells derived from these sources following lipopolysaccharide (LPS)/ peptic-tryptic-gliadin (PTG) fragment stimulation. Cell surface markers of CeD monocytes and MoDCs were subsequently profiled. This foremost study identified a novel bio-profile characterised by elevated CD64 and reduced CD33 levels, unique to CD14++ monocytes of CeD patients. Normalisation to LPS stimulation revealed the increased sensitivity of CeD-MoDCs to PTG, as shown by CD86 and HLA-DQ flow cytometric readouts. Enhanced CD86 and HLA-DQ expression in CeD-MoDCs were revealed by confocal microscopy. Analysis highlighted their dominance at the CeD-MoDC membrane in comparison to controls, reflective of superior antigen presentation ability. In conclusion, this investigative study deciphered the monocytes and MoDCs of CeD patients with the identification of a novel bio-profile marker of potential diagnostic value for clinical interpretation. Herein, the characterisation of CD86 and HLA-DQ as activators to stimulants, along with robust membrane assembly reflective of efficient antigen presentation, offers CeD targeted therapeutic avenues worth further exploration.
Zobrazit více v PubMed
Lundin K.E., Wijmenga C. Coeliac disease and autoimmune disease-genetic overlap and screening. Nat. Rev. Gastroenterol. Hepatol. 2015;12:507–515. doi: 10.1038/nrgastro.2015.136. PubMed DOI
Shiina T., Hosomichi K., Inoko H., Kulski J.K. The HLA genomic loci map: Expression, interaction, diversity and disease. J. Hum. Genet. 2009;54:15–39. doi: 10.1038/jhg.2008.5. PubMed DOI
Zajacova M., Kotrbova-Kozak A., Cerna M. HLA-DRB1, -DQA1 and -DQB1 genotyping of 180 Czech individuals from the Czech Republic pop 3. Hum. Immunol. 2016;77:365–366. doi: 10.1016/j.humimm.2016.02.003. PubMed DOI
Lebwohl B., Sanders D.S., Green P.H.R. Coeliac disease. Lancet. 2018;391:70–81. doi: 10.1016/S0140-6736(17)31796-8. PubMed DOI
Maki M., Collin P. Coeliac disease. Lancet. 1997;349:1755–1759. doi: 10.1016/S0140-6736(96)70237-4. PubMed DOI
Marsh M.N. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’) Gastroenterology. 1992;102:330–354. doi: 10.1016/0016-5085(92)91819-P. PubMed DOI
Sollid L.M. Coeliac disease: Dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2002;2:647–655. doi: 10.1038/nri885. PubMed DOI
Shan L., Molberg O., Parrot I., Hausch F., Filiz F., Gray G.M., Sollid L.M., Khosla C. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297:2275–2279. doi: 10.1126/science.1074129. PubMed DOI
Matysiak-Budnik T., Moura I.C., Arcos-Fajardo M., Lebreton C., Menard S., Candalh C., Ben-Khalifa K., Dugave C., Tamouza H., Van Niel G., et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J. Exp. Med. 2007;205:143–154. doi: 10.1084/jem.20071204. PubMed DOI PMC
Visser J., Rozing J., Sapone A., Lammers K., Fasano A. Tight junctions, intestinal permeability, and autoimmunity: Celiac disease and type 1 diabetes paradigms. Ann. Acad. Sci. 2009;1165:195–205. doi: 10.1111/j.1749-6632.2009.04037.x. PubMed DOI PMC
Schumann M., Siegmund B., Schulzke J.D., Fromm M. Celiac Disease: Role of the Epithelial Barrier. Cell. Mol. Gastroenterol. Hepatol. 2017;3:150–162. doi: 10.1016/j.jcmgh.2016.12.006. PubMed DOI PMC
Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y.-J., Pulendran B., Palucka K. Immunobiology of Dendritic Cells. Annu. Rev. Immunol. 2000;18:767–811. doi: 10.1146/annurev.immunol.18.1.767. PubMed DOI
Palová-Jelínková L., Rožková D., Pecharová B., Bártová J., Šedivá A., Tlaskalová-Hogenová H., Spíšek R., Tučková L. Gliadin Fragments Induce Phenotypic and Functional Maturation of Human Dendritic Cells. J. Immunol. 2005;175:7038–7045. doi: 10.4049/jimmunol.175.10.7038. PubMed DOI
Varol C., Landsman L., Fogg D.K., Greenshtein L., Gildor B., Margalit R., Kalchenko V., Geissmann F., Jung S. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 2006;204:171–180. doi: 10.1084/jem.20061011. PubMed DOI PMC
Yona S., Kim K.-W., Wolf Y., Mildner A., Varol D., Breker M., Strauss-Ayali D., Viukov S., Guilliams M., Misharin A., et al. Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity. 2013;38:79–91. doi: 10.1016/j.immuni.2012.12.001. PubMed DOI PMC
Wong K.L., Tai J.J.-Y., Wong W.-C., Han H., Sem X., Yeap W.-H., Kourilsky P., Wong S.-C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–e31. doi: 10.1182/blood-2010-12-326355. PubMed DOI
Wong K.L., Yeap W.H., Tai J.J.Y., Ong S.M., Dang T.M., Wong S.C. The three human monocyte subsets: Implications for health and disease. Immunol. Res. 2012;53:41–57. doi: 10.1007/s12026-012-8297-3. PubMed DOI
Zawada A.M., Rogacev K.S., Rotter B., Winter P., Marell R.-R., Fliser D., Heine G.H. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. 2011;118:e50–e61. doi: 10.1182/blood-2011-01-326827. PubMed DOI
Cinova J., Palová-Jelínková L., Smythies L.E., Černá M., Pecharová B., Dvorak M., Fruhauf P., Tlaskalová-Hogenová H., Smith P.D., Tučková L. Gliadin Peptides Activate Blood Monocytes from Patients with Celiac Disease. J. Clin. Immunol. 2007;27:201–209. doi: 10.1007/s10875-006-9061-z. PubMed DOI
Bai J.C., Ciacci C. World Gastroenterology Organisation Global Guidelines. J. Clin. Gastroenterol. 2017;51:755–768. doi: 10.1097/MCG.0000000000000919. PubMed DOI
Kleiveland C.R. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer; Cham, Switzerland: 2015. Peripheral Blood Mononuclear Cells; pp. 161–167. PubMed
Gren S.T., Rasmussen T.B., Janciauskiene S., Håkansson K., Gerwien J.G., Grip O. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets. PLoS ONE. 2015;10:e0144351. doi: 10.1371/journal.pone.0144351. PubMed DOI PMC
Kenderian S., Ruella M., Shestova O., Klichinsky M., Aikawa V., Morrissette J.J.D., Scholler J., Song D., Porter D.L., Carroll M.C., et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leuk. 2015;29:1637–1647. doi: 10.1038/leu.2015.52. PubMed DOI PMC
Akinrinmade O.A., Chetty S., Daramola A.K., Islam M.-U., Thepen T., Barth S. CD64: An Attractive Immunotherapeutic Target for M1-type Macrophage Mediated Chronic Inflammatory Diseases. Biomed. 2017;5:56. doi: 10.3390/biomedicines5030056. PubMed DOI PMC
Corbí A.L., Rodríguez C.L. CD11c Integrin Gene Promoter Activity during Myeloid Differentiation. Leuk. Lymphoma. 1997;25:415–425. doi: 10.3109/10428199709039028. PubMed DOI
Mbongue J.C., Nieves H.A., Torrez T.W., Langridge W.H.R. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. Front. Immunol. 2017;8:327. doi: 10.3389/fimmu.2017.00327. PubMed DOI PMC
Thapa B.R., Rawal P., Sapra B., Vaiphei K., Nain C.K., Singh K. Familial Prevalence of Celiac Disease. J. Trop. Pediatr. 2010;57:45–50. doi: 10.1093/tropej/fmq041. PubMed DOI
Title Page/List of Contents/Preface. Volume 26 S. Karger AG; Basel, Switzerland: 2009.
Taneja V., David C.S. HLA class II transgenic mice as models of human diseases. Immunol. Rev. 1999;169:67–79. doi: 10.1111/j.1600-065X.1999.tb01307.x. PubMed DOI
Mustalahti K., Catassi C., Reunanen A., Fabiani E., Heier M., McMillan S., Murray L., Metzger M.H., Gasparin M., Bravi E., et al. The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project. Ann. Med. 2010;42:587–595. doi: 10.3109/07853890.2010.505931. PubMed DOI
Vilppula A., Collin P., Mäki M., Valve R., Luostarinen M., Krekelä I., Patrikainen H., Kaukinen K. Undetected coeliac disease in the elderly: A biopsy-proven population-based study. Dig. Liver Dis. 2008;40:809–813. doi: 10.1016/j.dld.2008.03.013. PubMed DOI
Sumník Z., Kolousková S., Cinek O., Kotalová R., Vavrinec J., Snajderová M. HLA—DQA1*05-DQB1*0201 positivity predisposes to coeliac disease in Czech diabetic children. Acta Paediatr. 2007;89:1426–1430. doi: 10.1111/j.1651-2227.2000.tb02770.x. PubMed DOI
Lebwohl B., Ludvigsson J.F., Green P.H.R. Celiac disease and non-celiac gluten sensitivity. BMJ. 2015;351:h4347. doi: 10.1136/bmj.h4347. PubMed DOI PMC
Fasano A., Araya M., Bhatnagar S., Cameron D., Catassi C., Dirks M., Mearin M., Ortigosa L., Phillips A. Federation of International Societies of Pediatric Gastroenterology, Hepatology, and Nutrition Consensus Report on Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2008;47:214–219. doi: 10.1097/MPG.0b013e318181afed. PubMed DOI
Biagi F., Campanella J., Bianchi P., Zanellati G., Capriglione I., Klersy C., Corazza G.R. The incidence of coeliac disease in adult first degree relatives. Dig. Liver Dis. 2008;40:97–100. doi: 10.1016/j.dld.2007.10.004. PubMed DOI
Lionetti E., Castellaneta S., Francavilla R., Pulvirenti A., Tonutti E., Amarri S., Barbato M., Barbera C., Barera G., Bellantoni A., et al. Introduction of Gluten, HLA Status, and the Risk of Celiac Disease in Children. N. Engl. J. Med. 2014;371:1295–1303. doi: 10.1056/NEJMoa1400697. PubMed DOI
Fasano A., Attwood S.E.A., Lewis C.J., Bronder C.S., Morris C.D., Armstrong G.R., Whittam J. European and North American populations should be screened for coeliac disease. Gut. 2003;52:168–169. doi: 10.1136/gut.52.2.168. PubMed DOI PMC
Moerkens R., Mooiweer J., Withoff S., Wijmenga C. Celiac disease-on-chip: Modeling a multifactorial disease in vitro. United Eur. Gastroenterol. J. 2019;7:467–476. doi: 10.1177/2050640619836057. PubMed DOI PMC
Kurki A., Kemppainen E., Laurikka P., Kaukinen K., Lindfors K. The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Rev. Gastroenterol. Hepatol. 2021;15:305–316. doi: 10.1080/17474124.2021.1850262. PubMed DOI
du Pré F.M., van Berkel L.A., Ráki M., van Leeuwen M.A., de Ruiter L.F., Broere F., ter Borg M.N.D., Lund F.E., Escher J.C., Lundin K.E.A., et al. CD62LnegCD38+ Expression on Circulating CD4+ T Cells Identifies Mucosally Differentiated Cells in Protein Fed Mice and in Human Celiac Disease Patients and Controls. Am. J. Gastroenterol. 2011;106:1147–1159. doi: 10.1038/ajg.2011.24. PubMed DOI PMC
Butler C.A., Popescu A.S., Kitchener E.J.A., Allendorf D.H., Puigdellívol M., Brown G.C. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. 2021;158:621–639. doi: 10.1111/jnc.15327. PubMed DOI
Bhattacherjee A., Jung J., Zia S., Ho M., Eskandari-Sedighi G., Laurent C.D.S., McCord K.A., Bains A., Sidhu G., Sarkar S., et al. The CD33 short isoform is a gain-of-function variant that enhances Aβ1–42 phagocytosis in microglia. Mol. Neurodegener. 2021;16:1–22. doi: 10.1186/s13024-021-00443-6. PubMed DOI PMC
Ng P.C., Li G., Chui K.M., Chu W.C.W., Li K., Wong R.P.O., Chik K.W., Wong E., Fok T.F. Neutrophil CD64 Is a Sensitive Diagnostic Marker for Early-Onset Neonatal Infection. Pediatr. Res. 2004;56:796–803. doi: 10.1203/01.PDR.0000142586.47798.5E. PubMed DOI
Azeem W., Bakke R.M., Appel S., Øyan A.M., Kalland K.-H. Dual Pro- and Anti-Inflammatory Features of Monocyte-Derived Dendritic Cells. Front. Immunol. 2020;11:438. doi: 10.3389/fimmu.2020.00438. PubMed DOI PMC
Ráki M., Tollefsen S., Molberg Ø., Lundin K.E., Sollid L.M., Jahnsen F.L. A Unique Dendritic Cell Subset Accumulates in the Celiac Lesion and Efficiently Activates Gluten-Reactive T Cells. Gastroenterol. 2006;131:428–438. doi: 10.1053/j.gastro.2006.06.002. PubMed DOI
Choi I., Cho B., Kim S.D., Park D., Kim J.Y., Park C.-G., Chung O.H., Hwang W.S., Lee J.S., Ahn C. Molecular cloning, expression and functional characterization of miniature swine CD86. Mol. Immunol. 2006;43:480–486. doi: 10.1016/j.molimm.2005.02.016. PubMed DOI
Thorsby E., Lie B.A. HLA associated genetic predisposition to autoimmune diseases: Genes involved and possible mechanisms. Transpl. Immunol. 2005;14:175–182. doi: 10.1016/j.trim.2005.03.021. PubMed DOI
Jeannin P., Magistrelli G., Aubry J.-P., Caron G., Gauchat J.-F., Renno T., Herbault N., Goetsch L., Blaecke A., Dietrich P.-Y., et al. Soluble CD86 Is a Costimulatory Molecule for Human T Lymphocytes. Immunity. 2000;13:303–312. doi: 10.1016/S1074-7613(00)00030-3. PubMed DOI
Husby S., Koletzko S., Korponay-Szabó I., Kurppa K., Mearin M.L., Ribes-Koninckx C., Shamir R., Troncone R., Auricchio R., Castillejo G., et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020;70:141–156. doi: 10.1097/MPG.0000000000002497. PubMed DOI
The Immunological Epigenetic Landscape of the Human Life Trajectory