Celiac Disease Defined by Over-Sensitivity to Gliadin Activation and Superior Antigen Presentation of Dendritic Cells

. 2021 Sep 15 ; 22 (18) : . [epub] 20210915

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576145

Grantová podpora
260531/SVV/2020: PROGRES Q 36 - Metabolism, and 260531/SVV/2020: Multidisciplinary research of the regulation mechanisms of human metabolism.

The autoimmune condition, Celiac Disease (CeD), displays broad clinical symptoms due to gluten exposure. Its genetic association with DQ variants in the human leukocyte antigen (HLA) system has been recognised. Monocyte-derived mature dendritic cells (MoDCs) present gluten peptides through HLA-DQ and co-stimulatory molecules to T lymphocytes, eliciting a cytokine-rich microenvironment. Having access to CeD associated families prevalent in the Czech Republic, this study utilised an in vitro model to investigate their differential monocyte profile. The higher monocyte yields isolated from PBMCs of CeD patients versus control individuals also reflected the greater proportion of dendritic cells derived from these sources following lipopolysaccharide (LPS)/ peptic-tryptic-gliadin (PTG) fragment stimulation. Cell surface markers of CeD monocytes and MoDCs were subsequently profiled. This foremost study identified a novel bio-profile characterised by elevated CD64 and reduced CD33 levels, unique to CD14++ monocytes of CeD patients. Normalisation to LPS stimulation revealed the increased sensitivity of CeD-MoDCs to PTG, as shown by CD86 and HLA-DQ flow cytometric readouts. Enhanced CD86 and HLA-DQ expression in CeD-MoDCs were revealed by confocal microscopy. Analysis highlighted their dominance at the CeD-MoDC membrane in comparison to controls, reflective of superior antigen presentation ability. In conclusion, this investigative study deciphered the monocytes and MoDCs of CeD patients with the identification of a novel bio-profile marker of potential diagnostic value for clinical interpretation. Herein, the characterisation of CD86 and HLA-DQ as activators to stimulants, along with robust membrane assembly reflective of efficient antigen presentation, offers CeD targeted therapeutic avenues worth further exploration.

Zobrazit více v PubMed

Lundin K.E., Wijmenga C. Coeliac disease and autoimmune disease-genetic overlap and screening. Nat. Rev. Gastroenterol. Hepatol. 2015;12:507–515. doi: 10.1038/nrgastro.2015.136. PubMed DOI

Shiina T., Hosomichi K., Inoko H., Kulski J.K. The HLA genomic loci map: Expression, interaction, diversity and disease. J. Hum. Genet. 2009;54:15–39. doi: 10.1038/jhg.2008.5. PubMed DOI

Zajacova M., Kotrbova-Kozak A., Cerna M. HLA-DRB1, -DQA1 and -DQB1 genotyping of 180 Czech individuals from the Czech Republic pop 3. Hum. Immunol. 2016;77:365–366. doi: 10.1016/j.humimm.2016.02.003. PubMed DOI

Lebwohl B., Sanders D.S., Green P.H.R. Coeliac disease. Lancet. 2018;391:70–81. doi: 10.1016/S0140-6736(17)31796-8. PubMed DOI

Maki M., Collin P. Coeliac disease. Lancet. 1997;349:1755–1759. doi: 10.1016/S0140-6736(96)70237-4. PubMed DOI

Marsh M.N. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’) Gastroenterology. 1992;102:330–354. doi: 10.1016/0016-5085(92)91819-P. PubMed DOI

Sollid L.M. Coeliac disease: Dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2002;2:647–655. doi: 10.1038/nri885. PubMed DOI

Shan L., Molberg O., Parrot I., Hausch F., Filiz F., Gray G.M., Sollid L.M., Khosla C. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297:2275–2279. doi: 10.1126/science.1074129. PubMed DOI

Matysiak-Budnik T., Moura I.C., Arcos-Fajardo M., Lebreton C., Menard S., Candalh C., Ben-Khalifa K., Dugave C., Tamouza H., Van Niel G., et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J. Exp. Med. 2007;205:143–154. doi: 10.1084/jem.20071204. PubMed DOI PMC

Visser J., Rozing J., Sapone A., Lammers K., Fasano A. Tight junctions, intestinal permeability, and autoimmunity: Celiac disease and type 1 diabetes paradigms. Ann. Acad. Sci. 2009;1165:195–205. doi: 10.1111/j.1749-6632.2009.04037.x. PubMed DOI PMC

Schumann M., Siegmund B., Schulzke J.D., Fromm M. Celiac Disease: Role of the Epithelial Barrier. Cell. Mol. Gastroenterol. Hepatol. 2017;3:150–162. doi: 10.1016/j.jcmgh.2016.12.006. PubMed DOI PMC

Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y.-J., Pulendran B., Palucka K. Immunobiology of Dendritic Cells. Annu. Rev. Immunol. 2000;18:767–811. doi: 10.1146/annurev.immunol.18.1.767. PubMed DOI

Palová-Jelínková L., Rožková D., Pecharová B., Bártová J., Šedivá A., Tlaskalová-Hogenová H., Spíšek R., Tučková L. Gliadin Fragments Induce Phenotypic and Functional Maturation of Human Dendritic Cells. J. Immunol. 2005;175:7038–7045. doi: 10.4049/jimmunol.175.10.7038. PubMed DOI

Varol C., Landsman L., Fogg D.K., Greenshtein L., Gildor B., Margalit R., Kalchenko V., Geissmann F., Jung S. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 2006;204:171–180. doi: 10.1084/jem.20061011. PubMed DOI PMC

Yona S., Kim K.-W., Wolf Y., Mildner A., Varol D., Breker M., Strauss-Ayali D., Viukov S., Guilliams M., Misharin A., et al. Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity. 2013;38:79–91. doi: 10.1016/j.immuni.2012.12.001. PubMed DOI PMC

Wong K.L., Tai J.J.-Y., Wong W.-C., Han H., Sem X., Yeap W.-H., Kourilsky P., Wong S.-C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–e31. doi: 10.1182/blood-2010-12-326355. PubMed DOI

Wong K.L., Yeap W.H., Tai J.J.Y., Ong S.M., Dang T.M., Wong S.C. The three human monocyte subsets: Implications for health and disease. Immunol. Res. 2012;53:41–57. doi: 10.1007/s12026-012-8297-3. PubMed DOI

Zawada A.M., Rogacev K.S., Rotter B., Winter P., Marell R.-R., Fliser D., Heine G.H. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. 2011;118:e50–e61. doi: 10.1182/blood-2011-01-326827. PubMed DOI

Cinova J., Palová-Jelínková L., Smythies L.E., Černá M., Pecharová B., Dvorak M., Fruhauf P., Tlaskalová-Hogenová H., Smith P.D., Tučková L. Gliadin Peptides Activate Blood Monocytes from Patients with Celiac Disease. J. Clin. Immunol. 2007;27:201–209. doi: 10.1007/s10875-006-9061-z. PubMed DOI

Bai J.C., Ciacci C. World Gastroenterology Organisation Global Guidelines. J. Clin. Gastroenterol. 2017;51:755–768. doi: 10.1097/MCG.0000000000000919. PubMed DOI

Kleiveland C.R. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer; Cham, Switzerland: 2015. Peripheral Blood Mononuclear Cells; pp. 161–167. PubMed

Gren S.T., Rasmussen T.B., Janciauskiene S., Håkansson K., Gerwien J.G., Grip O. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets. PLoS ONE. 2015;10:e0144351. doi: 10.1371/journal.pone.0144351. PubMed DOI PMC

Kenderian S., Ruella M., Shestova O., Klichinsky M., Aikawa V., Morrissette J.J.D., Scholler J., Song D., Porter D.L., Carroll M.C., et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leuk. 2015;29:1637–1647. doi: 10.1038/leu.2015.52. PubMed DOI PMC

Akinrinmade O.A., Chetty S., Daramola A.K., Islam M.-U., Thepen T., Barth S. CD64: An Attractive Immunotherapeutic Target for M1-type Macrophage Mediated Chronic Inflammatory Diseases. Biomed. 2017;5:56. doi: 10.3390/biomedicines5030056. PubMed DOI PMC

Corbí A.L., Rodríguez C.L. CD11c Integrin Gene Promoter Activity during Myeloid Differentiation. Leuk. Lymphoma. 1997;25:415–425. doi: 10.3109/10428199709039028. PubMed DOI

Mbongue J.C., Nieves H.A., Torrez T.W., Langridge W.H.R. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. Front. Immunol. 2017;8:327. doi: 10.3389/fimmu.2017.00327. PubMed DOI PMC

Thapa B.R., Rawal P., Sapra B., Vaiphei K., Nain C.K., Singh K. Familial Prevalence of Celiac Disease. J. Trop. Pediatr. 2010;57:45–50. doi: 10.1093/tropej/fmq041. PubMed DOI

Title Page/List of Contents/Preface. Volume 26 S. Karger AG; Basel, Switzerland: 2009.

Taneja V., David C.S. HLA class II transgenic mice as models of human diseases. Immunol. Rev. 1999;169:67–79. doi: 10.1111/j.1600-065X.1999.tb01307.x. PubMed DOI

Mustalahti K., Catassi C., Reunanen A., Fabiani E., Heier M., McMillan S., Murray L., Metzger M.H., Gasparin M., Bravi E., et al. The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project. Ann. Med. 2010;42:587–595. doi: 10.3109/07853890.2010.505931. PubMed DOI

Vilppula A., Collin P., Mäki M., Valve R., Luostarinen M., Krekelä I., Patrikainen H., Kaukinen K. Undetected coeliac disease in the elderly: A biopsy-proven population-based study. Dig. Liver Dis. 2008;40:809–813. doi: 10.1016/j.dld.2008.03.013. PubMed DOI

Sumník Z., Kolousková S., Cinek O., Kotalová R., Vavrinec J., Snajderová M. HLA—DQA1*05-DQB1*0201 positivity predisposes to coeliac disease in Czech diabetic children. Acta Paediatr. 2007;89:1426–1430. doi: 10.1111/j.1651-2227.2000.tb02770.x. PubMed DOI

Lebwohl B., Ludvigsson J.F., Green P.H.R. Celiac disease and non-celiac gluten sensitivity. BMJ. 2015;351:h4347. doi: 10.1136/bmj.h4347. PubMed DOI PMC

Fasano A., Araya M., Bhatnagar S., Cameron D., Catassi C., Dirks M., Mearin M., Ortigosa L., Phillips A. Federation of International Societies of Pediatric Gastroenterology, Hepatology, and Nutrition Consensus Report on Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2008;47:214–219. doi: 10.1097/MPG.0b013e318181afed. PubMed DOI

Biagi F., Campanella J., Bianchi P., Zanellati G., Capriglione I., Klersy C., Corazza G.R. The incidence of coeliac disease in adult first degree relatives. Dig. Liver Dis. 2008;40:97–100. doi: 10.1016/j.dld.2007.10.004. PubMed DOI

Lionetti E., Castellaneta S., Francavilla R., Pulvirenti A., Tonutti E., Amarri S., Barbato M., Barbera C., Barera G., Bellantoni A., et al. Introduction of Gluten, HLA Status, and the Risk of Celiac Disease in Children. N. Engl. J. Med. 2014;371:1295–1303. doi: 10.1056/NEJMoa1400697. PubMed DOI

Fasano A., Attwood S.E.A., Lewis C.J., Bronder C.S., Morris C.D., Armstrong G.R., Whittam J. European and North American populations should be screened for coeliac disease. Gut. 2003;52:168–169. doi: 10.1136/gut.52.2.168. PubMed DOI PMC

Moerkens R., Mooiweer J., Withoff S., Wijmenga C. Celiac disease-on-chip: Modeling a multifactorial disease in vitro. United Eur. Gastroenterol. J. 2019;7:467–476. doi: 10.1177/2050640619836057. PubMed DOI PMC

Kurki A., Kemppainen E., Laurikka P., Kaukinen K., Lindfors K. The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Rev. Gastroenterol. Hepatol. 2021;15:305–316. doi: 10.1080/17474124.2021.1850262. PubMed DOI

du Pré F.M., van Berkel L.A., Ráki M., van Leeuwen M.A., de Ruiter L.F., Broere F., ter Borg M.N.D., Lund F.E., Escher J.C., Lundin K.E.A., et al. CD62LnegCD38+ Expression on Circulating CD4+ T Cells Identifies Mucosally Differentiated Cells in Protein Fed Mice and in Human Celiac Disease Patients and Controls. Am. J. Gastroenterol. 2011;106:1147–1159. doi: 10.1038/ajg.2011.24. PubMed DOI PMC

Butler C.A., Popescu A.S., Kitchener E.J.A., Allendorf D.H., Puigdellívol M., Brown G.C. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. 2021;158:621–639. doi: 10.1111/jnc.15327. PubMed DOI

Bhattacherjee A., Jung J., Zia S., Ho M., Eskandari-Sedighi G., Laurent C.D.S., McCord K.A., Bains A., Sidhu G., Sarkar S., et al. The CD33 short isoform is a gain-of-function variant that enhances Aβ1–42 phagocytosis in microglia. Mol. Neurodegener. 2021;16:1–22. doi: 10.1186/s13024-021-00443-6. PubMed DOI PMC

Ng P.C., Li G., Chui K.M., Chu W.C.W., Li K., Wong R.P.O., Chik K.W., Wong E., Fok T.F. Neutrophil CD64 Is a Sensitive Diagnostic Marker for Early-Onset Neonatal Infection. Pediatr. Res. 2004;56:796–803. doi: 10.1203/01.PDR.0000142586.47798.5E. PubMed DOI

Azeem W., Bakke R.M., Appel S., Øyan A.M., Kalland K.-H. Dual Pro- and Anti-Inflammatory Features of Monocyte-Derived Dendritic Cells. Front. Immunol. 2020;11:438. doi: 10.3389/fimmu.2020.00438. PubMed DOI PMC

Ráki M., Tollefsen S., Molberg Ø., Lundin K.E., Sollid L.M., Jahnsen F.L. A Unique Dendritic Cell Subset Accumulates in the Celiac Lesion and Efficiently Activates Gluten-Reactive T Cells. Gastroenterol. 2006;131:428–438. doi: 10.1053/j.gastro.2006.06.002. PubMed DOI

Choi I., Cho B., Kim S.D., Park D., Kim J.Y., Park C.-G., Chung O.H., Hwang W.S., Lee J.S., Ahn C. Molecular cloning, expression and functional characterization of miniature swine CD86. Mol. Immunol. 2006;43:480–486. doi: 10.1016/j.molimm.2005.02.016. PubMed DOI

Thorsby E., Lie B.A. HLA associated genetic predisposition to autoimmune diseases: Genes involved and possible mechanisms. Transpl. Immunol. 2005;14:175–182. doi: 10.1016/j.trim.2005.03.021. PubMed DOI

Jeannin P., Magistrelli G., Aubry J.-P., Caron G., Gauchat J.-F., Renno T., Herbault N., Goetsch L., Blaecke A., Dietrich P.-Y., et al. Soluble CD86 Is a Costimulatory Molecule for Human T Lymphocytes. Immunity. 2000;13:303–312. doi: 10.1016/S1074-7613(00)00030-3. PubMed DOI

Husby S., Koletzko S., Korponay-Szabó I., Kurppa K., Mearin M.L., Ribes-Koninckx C., Shamir R., Troncone R., Auricchio R., Castillejo G., et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020;70:141–156. doi: 10.1097/MPG.0000000000002497. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...