Enhanced Extracellular Transfer of HLA-DQ Activates CD3+ Lymphocytes towards Compromised Treg Induction in Celiac Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
xxxxxxx
Charles University
PubMed
35682780
PubMed Central
PMC9181181
DOI
10.3390/ijms23116102
PII: ijms23116102
Knihovny.cz E-zdroje
- Klíčová slova
- autoimmunity, exosome, gluten, major histocompatibility complex II, monocyte-derived dendritic cells,
- MeSH
- alely MeSH
- celiakie * MeSH
- gluteny genetika MeSH
- HLA-DQ antigeny genetika MeSH
- lidé MeSH
- regulační T-lymfocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gluteny MeSH
- HLA-DQ antigeny MeSH
Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility complex (MHC) with the T cell receptor (TCR) on T lymphocytes. This fundamental mechanism of adaptive immunity has broadened upon recognition of extracellular exosomal MHC, raising awareness of an alternative means for antigen presentation. This study demonstrates that conditioned growth media (CGM) previously exposed to monocyte-derived dendritic cells from CeD significantly downregulates the CD3+ lineage marker of control T cells. Such increased activation was reflected in their elevated IL-2 secretion. Exosome localization motif identification and quantification within HLA-DQA1 and HLA-DQB1 transcripts highlighted their significant prevalence within HLA-DQB1 alleles associated with CeD susceptibility. Flow cytometry revealed the strong correlation between HLA-DQ and the CD63 exosomal marker in T cells exposed to CGM from MoDCs sourced from CeD patients. This resulted in lower concentrations of CD25+ CD127- T cells, suggestive of their compromised induction to T-regulatory cells associated with CeD homeostasis. This foremost comparative study deciphered the genomic basis and extracellular exosomal effects of HLA transfer on T lymphocytes in the context of CeD, offering greater insight into this auto-immune disease.
Zobrazit více v PubMed
Maki M., Collin P. Coeliac disease. Lancet. 1997;349:1755–1759. doi: 10.1016/S0140-6736(96)70237-4. PubMed DOI
Marsh M.N. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’) Gastroenterology. 1992;102:330–354. doi: 10.1016/0016-5085(92)91819-P. PubMed DOI
Sollid L.M. Coeliac disease: Dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2002;2:647–655. doi: 10.1038/nri885. PubMed DOI
Shan L., Molberg Ø., Parrot I., Hausch F., Filiz F., Gray G.M., Sollid L.M., Khosla C. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297:2275–2279. doi: 10.1126/science.1074129. PubMed DOI
Malamut G., Matysiak-Budnik T., Grosdider E., Jais J.-P., Morales E., Damotte D., Caillat-Zucman S., Brousse N., Cerf-Bensussan N., Jian R., et al. Adult celiac disease with severe or partial villous atrophy: A comparative study. Gastroenterol. Clin. Biol. 2008;32:236–242. doi: 10.1016/j.gcb.2008.02.011. PubMed DOI
Visser J., Rozing J., Sapone A., Lammers K., Fasano A. Tight junctions, intestinal permeability, and autoimmunity: Celiac disease and type 1 diabetes paradigms. Ann. N. Y. Acad. Sci. 2009;1165:195–205. doi: 10.1111/j.1749-6632.2009.04037.x. PubMed DOI PMC
Schumann M., Siegmund B., Schulzke J.D., Fromm M. Celiac Disease: Role of the Epithelial Barrier. Cell. Mol. Gastroenterol. Hepatol. 2017;3:150–162. doi: 10.1016/j.jcmgh.2016.12.006. PubMed DOI PMC
Szalowska D., Bak-Romaniszyn L. Family recognition of celiac disease. Prz. Gastroenterol. 2013;8:390–395. doi: 10.5114/pg.2013.39923. PubMed DOI PMC
Lundin K.E., Wijmenga C. Coeliac disease and autoimmune disease-genetic overlap and screening. Nat. Rev. Gastroenterol. Hepatol. 2015;12:507–515. doi: 10.1038/nrgastro.2015.136. PubMed DOI
Hudec M., Riegerova K., Pala J., Kutna V., Cerna M., VB O.L. Celiac Disease Defined by Over-Sensitivity to Gliadin Activation and Superior Antigen Presentation of Dendritic Cells. Int. J. Mol. Sci. 2021;22:9982. doi: 10.3390/ijms22189982. PubMed DOI PMC
Lebwohl B., Sanders D.S., Green P.H.R. Coeliac disease. Lancet. 2018;391:70–81. doi: 10.1016/S0140-6736(17)31796-8. PubMed DOI
Zajacova M., Kotrbova-Kozak A., Cerna M. HLA-DRB1, -DQA1 and -DQB1 genotyping of 180 Czech individuals from the Czech Republic pop 3. Hum. Immunol. 2016;77:365–366. doi: 10.1016/j.humimm.2016.02.003. PubMed DOI
Laupeze B., Fardel O., Onno M., Bertho N., Drenou B., Fauchet R., Amiot L. Differential expression of major histocompatibility complex class Ia, Ib, and II molecules on monocytes-derived dendritic and macrophagic cells. Hum. Immunol. 1999;60:591–597. doi: 10.1016/S0198-8859(99)00025-7. PubMed DOI
Nouri-Shirazi M., Banchereau J., Bell D., Burkeholder S., Kraus E.T., Davoust J., Palucka K.A. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J. Immunol. 2000;165:3797–3803. doi: 10.4049/jimmunol.165.7.3797. PubMed DOI
Palova-Jelinkova L., Rozkova D., Pecharova B., Bartova J., Sediva A., Tlaskalova-Hogenova H., Spisek R., Tuckova L. Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J. Immunol. 2005;175:7038–7045. doi: 10.4049/jimmunol.175.10.7038. PubMed DOI
Raki M., Tollefsen S., Molberg O., Lundin K.E., Sollid L.M., Jahnsen F.L. A unique dendritic cell subset accumulates in the celiac lesion and efficiently activates gluten-reactive T cells. Gastroenterology. 2006;131:428–438. doi: 10.1053/j.gastro.2006.06.002. PubMed DOI
Raposo G., Nijman H.W., Stoorvogel W., Liejendekker R., Harding C.V., Melief C.J., Geuze H.J. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 1996;183:1161–1172. doi: 10.1084/jem.183.3.1161. PubMed DOI PMC
Thery C., Boussac M., Veron P., Ricciardi-Castagnoli P., Raposo G., Garin J., Amigorena S. Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 2001;166:7309–7318. doi: 10.4049/jimmunol.166.12.7309. PubMed DOI
Wubbolts R., Leckie R.S., Veenhuizen P.T., Schwarzmann G., Mobius W., Hoernschemeyer J., Slot J.W., Geuze H.J., Stoorvogel W. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J. Biol. Chem. 2003;278:10963–10972. doi: 10.1074/jbc.M207550200. PubMed DOI
Buschow S.I., Nolte-’t Hoen E.N., van Niel G., Pols M.S., ten Broeke T., Lauwen M., Ossendorp F., Melief C.J., Raposo G., Wubbolts R., et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic. 2009;10:1528–1542. doi: 10.1111/j.1600-0854.2009.00963.x. PubMed DOI
Nolte-’t Hoen E.N., Buschow S.I., Anderton S.M., Stoorvogel W., Wauben M.H. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009;113:1977–1981. doi: 10.1182/blood-2008-08-174094. PubMed DOI
Zitvogel L., Regnault A., Lozier A., Wolfers J., Flament C., Tenza D., Ricciardi-Castagnoli P., Raposo G., Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat. Med. 1998;4:594–600. doi: 10.1038/nm0598-594. PubMed DOI
Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Thery C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA. 2016;113:E968–E977. doi: 10.1073/pnas.1521230113. PubMed DOI PMC
Kanamori M., Nakatsukasa H., Okada M., Lu Q., Yoshimura A. Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends Immunol. 2016;37:803–811. doi: 10.1016/j.it.2016.08.012. PubMed DOI
Longhi M.S., Ma Y., Bogdanos D.P., Cheeseman P., Mieli-Vergani G., Vergani D. Impairment of CD4(+)CD25(+) regulatory T cells in autoimmune liver disease. J. Hepatol. 2004;41:31–37. doi: 10.1016/j.jhep.2004.03.008. PubMed DOI
Kumar V., Sercarz E. An integrative model of regulation centered on recognition of TCR peptide/MHC complexes. Immunol. Rev. 2001;182:113–121. doi: 10.1034/j.1600-065X.2001.1820109.x. PubMed DOI
Gurunathan S., Kang M.H., Jeyaraj M., Qasim M., Kim J.H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 2019;8:307. doi: 10.3390/cells8040307. PubMed DOI PMC
Munich S., Sobo-Vujanovic A., Buchser W.J., Beer-Stolz D., Vujanovic N.L. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology. 2012;1:1074–1083. doi: 10.4161/onci.20897. PubMed DOI PMC
Batagov A.O., Kuznetsov V.A., Kurochkin I.V. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genom. 2011;12((Suppl. 3)):S18. doi: 10.1186/1471-2164-12-S3-S18. PubMed DOI PMC
O’Leary V.B., Ovsepian S.V., Carrascosa L.G., Buske F.A., Radulovic V., Niyazi M., Moertl S., Trau M., Atkinson M.J., Anastasov N. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation. Cell Rep. 2015;11:474–485. doi: 10.1016/j.celrep.2015.03.043. PubMed DOI
Maccari G., Robinson J., Hammond J.A., Marsh S.G.E. The IPD Project: A centralised resource for the study of polymorphism in genes of the immune system. Immunogenetics. 2020;72:49–55. doi: 10.1007/s00251-019-01133-w. PubMed DOI PMC
Kovacs A.A.Z., Kono N., Wang C.H., Wang D., Frederick T., Operskalski E., Tien P.C., French A.L., Minkoff H., Kassaye S., et al. Association of HLA Genotype With T cell Activation in Human Immunodeficiency Virus (HIV) and HIV/Hepatitis C Virus-Coinfected Women. J. Infect. Dis. 2020;221:1156–1166. doi: 10.1093/infdis/jiz589. PubMed DOI PMC
Kondelkova K., Vokurkova D., Krejsek J., Borska L., Fiala Z., Ctirad A. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica. 2010;53:73–77. doi: 10.14712/18059694.2016.63. PubMed DOI
Guo J., Zhou X. Regulatory T cells turn pathogenic. Cell. Mol. Immunol. 2015;12:525–532. doi: 10.1038/cmi.2015.12. PubMed DOI PMC
Zheng S.G., Gray J.D., Ohtsuka K., Yamagiwa S., Horwitz D.A. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J. Immunol. 2002;169:4183–4189. doi: 10.4049/jimmunol.169.8.4183. PubMed DOI
Takahashi T., Tagami T., Yamazaki S., Uede T., Shimizu J., Sakaguchi N., Mak T.W., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 2000;192:303–310. doi: 10.1084/jem.192.2.303. PubMed DOI PMC
Gaudino S.J., Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front. Immunol. 2019;10:360. doi: 10.3389/fimmu.2019.00360. PubMed DOI PMC
Turley S.J., Inaba K., Garrett W.S., Ebersold M., Unternaehrer J., Steinman R.M., Mellman I. Transport of peptide-MHC class II complexes in developing dendritic cells. Science. 2000;288:522–527. doi: 10.1126/science.288.5465.522. PubMed DOI
Robins G., Howdle P.D. Advances in celiac disease. Curr. Opin. Gastroenterol. 2005;21:152–161. doi: 10.1097/01.mog.0000153312.05457.8d. PubMed DOI
Perez-Bravo F., Araya M., Mondragon A., Rios G., Alarcon T., Roessler J.L., Santos J.L. Genetic differences in HLA-DQA1* and DQB1* allelic distributions between celiac and control children in Santiago, Chile. Hum. Immunol. 1999;60:262–267. doi: 10.1016/S0198-8859(98)00119-0. PubMed DOI
Shevach E.M. CD4+ CD25+ suppressor T cells: More questions than answers. Nat. Rev. Immunol. 2002;2:389–400. doi: 10.1038/nri821. PubMed DOI
Hadis U., Wahl B., Schulz O., Hardtke-Wolenski M., Schippers A., Wagner N., Muller W., Sparwasser T., Forster R., Pabst O. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011;34:237–246. doi: 10.1016/j.immuni.2011.01.016. PubMed DOI
Josefowicz S.Z., Niec R.E., Kim H.Y., Treuting P., Chinen T., Zheng Y., Umetsu D.T., Rudensky A.Y. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482:395–399. doi: 10.1038/nature10772. PubMed DOI PMC
Dominguez-Villar M., Hafler D.A. Regulatory T cells in autoimmune disease. Nat. Immunol. 2018;19:665–673. doi: 10.1038/s41590-018-0120-4. PubMed DOI PMC
Liu H., Leung B.P. CD4+CD25+ regulatory T cells in health and disease. Clin. Exp. Pharmacol. Physiol. 2006;33:519–524. doi: 10.1111/j.1440-1681.2006.04401.x. PubMed DOI
Husby S., Koletzko S., Korponay-Szabo I., Kurppa K., Mearin M.L., Ribes-Koninckx C., Shamir R., Troncone R., Auricchio R., Castillejo G., et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020;70:141–156. doi: 10.1097/MPG.0000000000002497. PubMed DOI
Robinson J., Halliwell J.A., McWilliam H., Lopez R., Marsh S.G. IPD—The Immuno Polymorphism Database. Nucleic Acids Res. 2013;41:D1234–D1240. doi: 10.1093/nar/gks1140. PubMed DOI PMC