Effects of Heme Site (FA1) Ligands Bilirubin, Biliverdin, Hemin, and Methyl Orange on the Albumin Binding of Site I Marker Warfarin: Complex Allosteric Interactions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ÚNKP-21-5
Ministry for Innovation and Technology
PubMed
36430492
PubMed Central
PMC9694159
DOI
10.3390/ijms232214007
PII: ijms232214007
Knihovny.cz E-zdroje
- Klíčová slova
- Sudlow’s site I, allosteric modulation, heme site, human serum albumin, warfarin,
- MeSH
- bilirubin MeSH
- biliverdin * MeSH
- hem metabolismus MeSH
- hemin MeSH
- lidé MeSH
- ligandy MeSH
- sérový albumin metabolismus MeSH
- warfarin * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bilirubin MeSH
- biliverdin * MeSH
- hem MeSH
- hemin MeSH
- ligandy MeSH
- methyl orange MeSH Prohlížeč
- sérový albumin MeSH
- warfarin * MeSH
Human serum albumin (HSA) is the most abundant plasma protein in circulation. The three most important drug-binding sites on HSA are Sudlow's Site I (subdomain IIA), Sudlow's Site II (subdomain IIIA), and Heme site (subdomain IB). Heme site and Site I are allosterically coupled; therefore, their ligands may be able to allosterically modulate the binding affinity of each other. In this study, the effects of four Heme site ligands (bilirubin, biliverdin, hemin, and methyl orange) on the interaction of the Site I ligand warfarin with HSA were tested, employing fluorescence spectroscopic, ultrafiltration, and ultracentrifugation studies. Our major results/conclusions are the following. (1) Quenching studies indicated no relevant interaction, while the other fluorescent model used suggested that each Heme site ligand strongly decreases the albumin binding of warfarin. (2) Ultrafiltration and ultracentrifugation studies demonstrated the complex modulation of warfarin-HSA interaction by the different Heme site markers; for example, bilirubin strongly decreased while methyl orange considerably increased the bound fraction of warfarin. (3) Fluorescence spectroscopic studies showed misleading results in these diligand-albumin interactions. (4) Different Heme site ligands can increase or decrease the albumin binding of warfarin and the outcome can even be concentration dependent (e.g., biliverdin and hemin).
Department of Biophysics Medical School University of Pécs Szigeti út 12 H 7624 Pécs Hungary
Department of Pharmacology Faculty of Pharmacy University of Pécs Rókus u 2 H 7624 Pécs Hungary
Zobrazit více v PubMed
Peters T. All about Albumin: Biochemistry, Genetics, and Medical Applications. Academic Press; San Diego, CA, USA: 1996.
Fanali G., di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Human Serum Albumin: From Bench to Bedside. Mol. Aspects Med. 2012;33:209–290. doi: 10.1016/j.mam.2011.12.002. PubMed DOI
Merlot A.M., Kalinowski D.S., Richardson D.R. Unraveling the Mysteries of Serum Albumin—More than Just a Serum Protein. Front. Physiol. 2014;5:299. doi: 10.3389/fphys.2014.00299. PubMed DOI PMC
Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K. Crystal Structure of Human Serum Albumin at 2.5 Å Resolution. Protein Eng. Des. Sel. 1999;12:439–446. doi: 10.1093/protein/12.6.439. PubMed DOI
Zsila F. Subdomain IB Is the Third Major Drug Binding Region of Human Serum Albumin: Toward the Three-Sites Model. Mol. Pharm. 2013;10:1668–1682. doi: 10.1021/mp400027q. PubMed DOI
Mishra V., Heath R.J. Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int. J. Mol. Sci. 2021;22:8411. doi: 10.3390/ijms22168411. PubMed DOI PMC
Ghuman J., Zunszain P.A., Petitpas I., Bhattacharya A.A., Otagiri M., Curry S. Structural Basis of the Drug-Binding Specificity of Human Serum Albumin. J. Mol. Biol. 2005;353:38–52. doi: 10.1016/j.jmb.2005.07.075. PubMed DOI
Petitpas I., Bhattacharya A.A., Twine S., East M., Curry S. Crystal Structure Analysis of Warfarin Binding to Human Serum Albumin: ANATOMY OF DRUG SITE I*. J. Biol. Chem. 2001;276:22804–22809. doi: 10.1074/jbc.M100575200. PubMed DOI
Curry S. Lessons from the Crystallographic Analysis of Small Molecule Binding to Human Serum Albumin. Drug Metab. Pharmacokinet. 2009;24:342–357. doi: 10.2133/dmpk.24.342. PubMed DOI
Wybranowski T., Cyrankiewicz M., Ziomkowska B., Kruszewski S. The HSA Affinity of Warfarin and Flurbiprofen Determined by Fluorescence Anisotropy Measurements of Camptothecin. Biosystems. 2008;94:258–262. doi: 10.1016/j.biosystems.2008.05.034. PubMed DOI
Joseph K.S., Hage D.S. The Effects of Glycation on the Binding of Human Serum Albumin to Warfarin and L-Tryptophan. J. Pharm. Biomed. Anal. 2010;53:811–818. doi: 10.1016/j.jpba.2010.04.035. PubMed DOI PMC
Poór M., Li Y., Kunsági-Máté S., Petrik J., Vladimir-Knežević S., Kőszegi T. Molecular Displacement of Warfarin from Human Serum Albumin by Flavonoid Aglycones. J. Lumin. 2013;142:122–127. doi: 10.1016/j.jlumin.2013.03.056. DOI
Fliszár-Nyúl E., Faisal Z., Skaper R., Lemli B., Bayartsetseg B., Hetényi C., Gömbös P., Szabó A., Poór M. Interaction of the Emerging Mycotoxins Beauvericin, Cyclopiazonic Acid, and Sterigmatocystin with Human Serum Albumin. Biomolecules. 2022;12:1106. doi: 10.3390/biom12081106. PubMed DOI PMC
Zunszain P.A., Ghuman J., Komatsu T., Tsuchida E., Curry S. Crystal Structural Analysis of Human Serum Albumin Complexed with Hemin and Fatty Acid. BMC Struct. Biol. 2003;3:6. doi: 10.1186/1472-6807-3-6. PubMed DOI PMC
Ambrosetti R., Bianchini R., Fisichella S., Fichera M., Zandomeneghi M. Resolution of the Absorbance and CD Spectra and Formation Constants of the Complexes between Human Serum Albumin and Methyl Orange. Chem.—Eur. J. 1996;2:149–156. doi: 10.1002/chem.19960020206. DOI
Jacobsen J. Binding of Bilirubin to Human Serum Albumin—Determination of the Dissociation Constants. FEBS Lett. 1969;5:112–114. doi: 10.1016/0014-5793(69)80307-8. PubMed DOI
Woolley P.V., Hunter M.J. Binding and Circular Dichroism Data on Bilirubin-Albumin in the Presence of Oleate and Salicylate. Arch. Biochem. Biophys. 1970;140:197–209. doi: 10.1016/0003-9861(70)90023-8. PubMed DOI
Beaven G.H., D’Albis A., Gratzer W.B. The Interaction of Bilirubin with Human Serum Albumin. Eur. J. Biochem. 1973;33:500–509. doi: 10.1111/j.1432-1033.1973.tb02709.x. PubMed DOI
Brodersen R. Bilirubin. Solubility and Interaction with Albumin and Phospholipid. J. Biol. Chem. 1979;254:2364–2369. doi: 10.1016/S0021-9258(17)30230-2. PubMed DOI
Ahlfors C.E. Competitive Interaction of Biliverdin and Bilirubin Only at the Primary Bilirubin Binding Site on Human Albumin. Anal. Biochem. 1981;110:295–307. doi: 10.1016/0003-2697(81)90195-0. PubMed DOI
Lorey F.W., Ahlfors C.E., Smith D.G., Neel J.V. Bilirubin Binding by Variant Albumins in Yanomama Indians. Am. J. Hum. Genet. 1984;36:1112–1120. PubMed PMC
Athar H., Ahmad N., Tayyab S., Qasim M.A. Use of Fluorescence Enhancement Technique to Study Bilirubin–Albumin Interaction. Int. J. Biol. Macromol. 1999;25:353–358. doi: 10.1016/S0141-8130(99)00056-2. PubMed DOI
Trull F.R., Ibars O., Lightner D.A. Conformation Inversion of Bilirubin Formed by Reduction of the Biliverdin-Human Serum Albumin Complex: Evidence from Circular Dichroism. Arch. Biochem. Biophys. 1992;298:710–714. doi: 10.1016/0003-9861(92)90470-H. PubMed DOI
Minchiotti L., Galliano M., Zapponi M.C., Tenni R. The Structural Characterization and Bilirubin-Binding Properties of Albumin Herborn, a [Lys240Glu] Albumin Mutant. Eur. J. Biochem. 1993;214:437–444. doi: 10.1111/j.1432-1033.1993.tb17939.x. PubMed DOI
Beaven G.H., Chen S.-H., D’albis A., Gratzer W.B. A Spectroscopic Study of the Haemin-Human-Serum-Albumin System. Eur. J. Biochem. 1974;41:539–546. doi: 10.1111/j.1432-1033.1974.tb03295.x. PubMed DOI
Silva D., Cortez C.M., Louro S.R.W. Quenching of the Intrinsic Fluorescence of Bovine Serum Albumin by Chlorpromazine and Hemin. Braz. J. Med. Biol. Res. 2004;37:963–968. doi: 10.1590/S0100-879X2004000700004. PubMed DOI
Makarska-Bialokoz M. Interactions of Hemin with Bovine Serum Albumin and Human Hemoglobin: A Fluorescence Quenching Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018;193:23–32. doi: 10.1016/j.saa.2017.11.063. PubMed DOI
Ascenzi P., Fasano M. Allostery in a Monomeric Protein: The Case of Human Serum Albumin. Biophys. Chem. 2010;148:16–22. doi: 10.1016/j.bpc.2010.03.001. PubMed DOI
Ascenzi P., Bocedi A., Notari S., Menegatti E., Fasano M. Heme Impairs Allosterically Drug Binding to Human Serum Albumin Sudlow’s Site I. Biochem. Biophys. Res. Commun. 2005;334:481–486. doi: 10.1016/j.bbrc.2005.06.127. PubMed DOI
Bocedi A., Notari S., Menegatti E., Fanali G., Fasano M., Ascenzi P. Allosteric Modulation of Anti-HIV Drug and Ferric Heme Binding to Human Serum Albumin. FEBS J. 2005;272:6287–6296. doi: 10.1111/j.1742-4658.2005.05015.x. PubMed DOI
Fanali G., Pariani G., Ascenzi P., Fasano M. Allosteric and Binding Properties of Asp1-Glu382 Truncated Recombinant Human Serum Albumin—An Optical and NMR Spectroscopic Investigation. FEBS J. 2009;276:2241–2250. doi: 10.1111/j.1742-4658.2009.06952.x. PubMed DOI
Vuignier K., Schappler J., Veuthey J.-L., Carrupt P.-A., Martel S. Drug–Protein Binding: A Critical Review of Analytical Tools. Anal. Bioanal. Chem. 2010;398:53–66. doi: 10.1007/s00216-010-3737-1. PubMed DOI
van de Weert M. Fluorescence Quenching to Study Protein-Ligand Binding: Common Errors. J. Fluoresc. 2010;20:625–629. doi: 10.1007/s10895-009-0572-x. PubMed DOI
van de Weert M., Stella L. Fluorescence Quenching and Ligand Binding: A Critical Discussion of a Popular Methodology. J. Mol. Struct. 2011;998:144–150. doi: 10.1016/j.molstruc.2011.05.023. DOI
Fliszár-Nyúl E., Lemli B., Kunsági-Máté S., Dellafiora L., Dall’Asta C., Cruciani G., Pethő G., Poór M. Interaction of Mycotoxin Alternariol with Serum Albumin. Int. J. Mol. Sci. 2019;20:2352. doi: 10.3390/ijms20092352. PubMed DOI PMC
Yamasaki K., Chuang V.T.G., Maruyama T., Otagiri M. Albumin–Drug Interaction and Its Clinical Implication. Biochim. Biophys. Acta BBA—Gen. Subj. 2013;1830:5435–5443. doi: 10.1016/j.bbagen.2013.05.005. PubMed DOI
Li D., Wang Y., Chen J., Ji B. Characterization of the Interaction between Farrerol and Bovine Serum Albumin by Fluorescence and Circular Dichroism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011;79:680–686. doi: 10.1016/j.saa.2011.04.005. PubMed DOI
Li X., Duan H., Song Z., Xu R. Comparative Study on the Interaction between Fibrinogen and Flavonoids. J. Mol. Struct. 2022;1262:132963. doi: 10.1016/j.molstruc.2022.132963. DOI
Tang J., Qi S., Chen X. Spectroscopic Studies of the Interaction of Anti-Coagulant Rodenticide Diphacinone with Human Serum Albumin. J. Mol. Struct. 2005;779:87–95. doi: 10.1016/j.molstruc.2005.07.023. DOI
Wang Y.-Q., Zhang H.-M., Zhang G.-C., Tao W.-H., Fei Z.-H., Liu Z.-T. Spectroscopic Studies on the Interaction between Silicotungstic Acid and Bovine Serum Albumin. J. Pharm. Biomed. Anal. 2007;43:1869–1875. doi: 10.1016/j.jpba.2007.01.001. PubMed DOI
Alanazi A.M., Abdelhameed A.S. A Spectroscopic Approach to Investigate the Molecular Interactions between the Newly Approved Irreversible ErbB Blocker “Afatinib” and Bovine Serum Albumin. PLoS ONE. 2016;11:e0146297. doi: 10.1371/journal.pone.0146297. PubMed DOI PMC
Makarska-Bialokoz M. Spectroscopic Study of Porphyrin-Caffeine Interactions. J. Fluoresc. 2012;22:1521–1530. doi: 10.1007/s10895-012-1090-9. PubMed DOI PMC
Varlan A., Hillebrand M. Bovine and Human Serum Albumin Interactions with 3-Carboxyphenoxathiin Studied by Fluorescence and Circular Dichroism Spectroscopy. Molecules. 2010;15:3905–3919. doi: 10.3390/molecules15063905. PubMed DOI PMC
Zhao H., Ge M., Zhang Z., Wang W., Wu G. Spectroscopic Studies on the Interaction between Riboflavin and Albumins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006;65:811–817. doi: 10.1016/j.saa.2005.12.038. PubMed DOI
Nusrat S., Siddiqi M.K., Zaman M., Zaidi N., Ajmal M.R., Alam P., Qadeer A., Abdelhameed A.S., Khan R.H. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins. PLoS ONE. 2016;11:e0158833. doi: 10.1371/journal.pone.0158833. PubMed DOI PMC
Tu B., Chen Z.-F., Liu Z.-J., Li R.-R., Ouyang Y., Hu Y.-J. Study of the Structure-Activity Relationship of Flavonoids Based on Their Interaction with Human Serum Albumin. RSC Adv. 2015;5:73290–73300. doi: 10.1039/C5RA12824B. DOI
Zhang Y.-Z., Xiang X., Mei P., Dai J., Zhang L.-L., Liu Y. Spectroscopic Studies on the Interaction of Congo Red with Bovine Serum Albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009;72:907–914. doi: 10.1016/j.saa.2008.12.007. PubMed DOI
Zhang G., Zhao N., Hu X., Tian J. Interaction of Alpinetin with Bovine Serum Albumin: Probing of the Mechanism and Binding Site by Spectroscopic Methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010;76:410–417. doi: 10.1016/j.saa.2010.04.009. PubMed DOI
Poór M., Boda G., Needs P.W., Kroon P.A., Lemli B., Bencsik T. Interaction of Quercetin and Its Metabolites with Warfarin: Displacement of Warfarin from Serum Albumin and Inhibition of CYP2C9 Enzyme. Biomed. Pharmacother. 2017;88:574–581. doi: 10.1016/j.biopha.2017.01.092. PubMed DOI
Mohos V., Fliszár-Nyúl E., Schilli G., Hetényi C., Lemli B., Kunsági-Máté S., Bognár B., Poór M. Interaction of Chrysin and Its Main Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide with Serum Albumin. Int. J. Mol. Sci. 2018;19:4073. doi: 10.3390/ijms19124073. PubMed DOI PMC
Poór M., Boda G., Mohos V., Kuzma M., Bálint M., Hetényi C., Bencsik T. Pharmacokinetic Interaction of Diosmetin and Silibinin with Other Drugs: Inhibition of CYP2C9-Mediated Biotransformation and Displacement from Serum Albumin. Biomed. Pharmacother. 2018;102:912–921. doi: 10.1016/j.biopha.2018.03.146. PubMed DOI
Poór M., Kunsági-Máté S., Bálint M., Hetényi C., Gerner Z., Lemli B. Interaction of Mycotoxin Zearalenone with Human Serum Albumin. J. Photochem. Photobiol. B. 2017;170:16–24. doi: 10.1016/j.jphotobiol.2017.03.016. PubMed DOI
Domenici E., Bertucci C., Salvadori P., Wainer I.W. Use of a Human Serum Albumin-Based High-Performance Liquid Chromatography Chiral Stationary Phase for the Investigation of Protein Binding: Detection of the Allosteric Interaction between Warfarin and Benzodiazepine Binding Sites. J. Pharm. Sci. 1991;80:164–166. doi: 10.1002/jps.2600800216. PubMed DOI
Kalhor H.R., Taghikhani E. Probe into the Molecular Mechanism of Ibuprofen Interaction with Warfarin Bound to Human Serum Albumin in Comparison to Ascorbic and Salicylic Acids: Allosteric Inhibition of Anticoagulant Release. J. Chem. Inf. Model. 2021;61:4045–4057. doi: 10.1021/acs.jcim.1c00352. PubMed DOI
Vorum H., Honoré B. Influence of Fatty Acids on the Binding of Warfarin and Phenprocoumon to Human Serum Albumin with Relation to Anticoagulant Therapy. J. Pharm. Pharmacol. 1996;48:870–875. doi: 10.1111/j.2042-7158.1996.tb03990.x. PubMed DOI
Boulton D.W., Walle U.K., Walle T. Extensive Binding of the Bioflavonoid Quercetin to Human Plasma Proteins. J. Pharm. Pharmacol. 1998;50:243–249. doi: 10.1111/j.2042-7158.1998.tb06183.x. PubMed DOI
Fliszár-Nyúl E., Faisal Z., Mohos V., Derdák D., Lemli B., Kálai T., Sár C., Zsidó B.Z., Hetényi C., Horváth Á.I., et al. Interaction of SZV 1287, a Novel Oxime Analgesic Drug Candidate, and Its Metabolites with Serum Albumin. J. Mol. Liq. 2021;333:115945. doi: 10.1016/j.molliq.2021.115945. DOI
Scatchard G. The Attractions of Proteins for Small Molecules and Ions. Ann. N. Y. Acad. Sci. 1949;51:660–672. doi: 10.1111/j.1749-6632.1949.tb27297.x. DOI
Gans P., Sabatini A., Vacca A. Investigation of Equilibria in Solution. Determination of Equilibrium Constants with the HYPERQUAD Suite of Programs. Talanta. 1996;43:1739–1753. doi: 10.1016/0039-9140(96)01958-3. PubMed DOI
Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. Springer; New York, NY, USA: 2006.
Wang T., Zeng L.-H., Li D.-L. A Review on the Methods for Correcting the Fluorescence Inner-Filter Effect of Fluorescence Spectrum. Appl. Spectrosc. Rev. 2017;52:883–908. doi: 10.1080/05704928.2017.1345758. DOI
Pászti-Gere E., Szentkirályi-Tóth A., Szabó P., Steinmetzer T., Fliszár-Nyúl E., Poór M. In Vitro Characterization of the Furin Inhibitor MI-1851: Albumin Binding, Interaction with Cytochrome P450 Enzymes and Cytotoxicity. Biomed. Pharmacother. 2022;151:113124. doi: 10.1016/j.biopha.2022.113124. PubMed DOI PMC