Scintillation Characteristics of the Single-Crystalline Film and Composite Film-Crystal Scintillators Based on the Ce3+-Doped (Lu,Gd)3(Ga,Al)5O12 Mixed Garnets under Alpha and Beta Particles, and Gamma Ray Excitations
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
No 2018/31/B/ST8/03390
Polish NCN
2021/05/X/ST5/00138
MINIATURA
PubMed
36431411
PubMed Central
PMC9696813
DOI
10.3390/ma15227925
PII: ma15227925
Knihovny.cz E-resources
- Keywords
- Ce3+-doped multicomponent garnets, alpha and beta particles, gamma ray, liquid-phase epitaxy, scintillation, single-crystalline films,
- Publication type
- Journal Article MeSH
The crystals of (Lu,Gd)3(Ga,Al)5O12 multicomponent garnets with high density ρ and effective atomic number Zeff are characterized by high scintillation efficiency and a light yield value up to 50,000 ph/MeV. During recent years, single-crystalline films and composite film/crystal scintillators were developed on the basis of these multicomponent garnets. These film/crystal composites are potentially applicable for particle identification by pulse shape discrimination due to the fact that α-particles excite only the film response, γ-radiation excites only the substrate response, and β-particles excite both to some extent. Here, we present new results regarding scintillating properties of selected (Lu,Gd)3(Ga,Al)5O12:Ce single-crystalline films under excitation by alpha and beta particles and gamma ray photons. We conclude that some of studied compositions are indeed suitable for testing in the proposed application, most notably Lu1.5Gd1.5Al3Ga2O12:Ce film on the GAGG:Ce substrate, exhibiting an α-particle-excited light yield of 1790-2720 ph/MeV and significantly different decay curves excited by α- and γ-radiation.
CERN Experimental Physics Department 1 Esplanade des Particules 1211 Geneva Switzerland
Crytur Ltd Na Lukach 2283 51101 Turnov Czech Republic
Institute for Scintillation Materials NAS of Ukraine 60 Nauky Ave 61072 Kharkiv Ukraine
See more in PubMed
van Eijk C.W.E. Inorganic scintillators medical imaging. Phys. Med. Biol. 2002;47:R85–R106. doi: 10.1088/0031-9155/47/8/201. PubMed DOI
Nikl M., Nikl M. Scintillation detectors for X-rays. Meas. Sci. Technol. 2006;17:R37–R54. doi: 10.1088/0957-0233/17/4/R01. DOI
Yamada H., Suzuki A., Uchida Y., Yoshida M., Yamamoto M. A Scintillator G2O2S:Pr,Ce,F for X-ray Computed Tomography. J. Electrochem. Soc. 1989;136:2713–2714. doi: 10.1149/1.2097566. DOI
Yoshino M., Kamada K., Shoji Y., Kurosawa S., Yokota Y., Ohashi Y., Yoshikawa A., Yamamoto S. Development of Eu:SrI2 Scintillator Array for Gamma-Ray Imaging Applications. IEEE Trans. Nucl. Sci. 2017;64:1647–1651. doi: 10.1109/TNS.2017.2676769. DOI
D’Ambrosio C., de Notaristefani F., Leutz H., Puertolas D., Rosso E. X-Ray Detection with a Scintillating YAP-Window Hybrid Photomultiplier Tube. IEEE Trans. Nucl. Sci. 2000;47:6–12. doi: 10.1109/23.826891. DOI
D’Ambrosio C., Leutz H., Piedigrossi D., Rosso E., Cencelli V. Gamma spectroscopy and optoelectronic imaging with hybrid photon detector. NIM Phys. Res. A. 2003;497:186–197. doi: 10.1016/S0168-9002(02)01910-1. DOI
Martin T., Koch A. Recent development in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006;13:180–194. doi: 10.1107/S0909049506000550. PubMed DOI
Martin T., Douissard P.-A., Couchaud M., Cecilia A., Baumbach T., Dupré K., Rack A. LSO-based single crystal film scintillator for synchrotron-based hard X-ray microimaging. IEEE Trans. Nucl. Sci. 2009;56:1412–1418. doi: 10.1109/TNS.2009.2015878. DOI
Tous J., Horvath M., Pina L., Blazek K., Sopko B. High-resolution application of YAG:Ce and LuAG:Ce imaging detectors with CCD X-ray camera. NIM Phys Res. A. 2008;591:264–267. doi: 10.1016/j.nima.2008.03.070. DOI
Auffray E., Baccaro S., Beckers T., Benhammou Y., Belsky A.N., Borgia B., Boutet D., Chipaux R., Dafinei I., de Notaristefani F., et al. Extensive studies on CeF3 crystals, a good candidate for electromagnetic calorimetry at future accelerators. NIM Phys. Res. A. 1996;383:367–390. doi: 10.1016/S0168-9002(96)00806-6. DOI
Aleksandrov D.V., Burachas S.F., Ippolitov M.S., Lebedev V.A., Manko V.I., Nikulin S.A., Nyanin A.S., Sibiriak I.G., Tsvetkov A.A., Vasiliev A.A. A high resolution electromagnetic calorimeter based on lead-tungstate crystals. NIM Phys. Res. A. 2005;550:169–184. doi: 10.1016/j.nima.2005.03.174. DOI
Nikl, Yoshikawa A., Kamada K., Nejezchleb K., Stanek C.R., Mares J.A., Blazek K. Development of LuAG based scintillator crystals—A review. Prog. Cryst. Growth Character. Mater. 2012;59:47–72.
Mares J.A., Nikl M., Beitlerova A., Horodysky P., Blažek K., Bartoš K., D’Aambrosio C. Scintillation Properties of Ce3+- and Pr3+-Doped LuAG, YAG and Mixed LuxY1-x AG Garnet Crystals. IEEE Trans. Nucl. Sci. 2012;59:2120–2125. doi: 10.1109/TNS.2012.2191573. DOI
Mares J.A., Beiterova A., Nikl M., Solovieva N., D’Ambrosio C., Blazek K., Maly P., Nejezchleb K., de Notaristefani F. Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1 MeV. Rad. Meas. 2004;38:353–357. doi: 10.1016/j.radmeas.2004.04.004. DOI
Mares J.A., Nikl M., Beitlerová A., Blažek K., Horodysky P., Nejezchleb K., D’Ambrosio C. Scintillation properties of Pr3+-doped lutetium and yttrium aluminum garnets: Comparison with Ce3+-doped ones. Opt. Mater. 2011;34:424–427. doi: 10.1016/j.optmat.2011.07.031. DOI
Dujardin C., Mancini C., Amans D., Ledoux G., Abler D., Auffray E., Lecoq P., Perrodin D., Petrosyan A., Ovanesyan K.L. LuAG: Ce fibers for high energy calorimetry. J. Appl. Phys. 2010;108:013510. doi: 10.1063/1.3452358. DOI
Swiderski L., Moszynski M., Nassalski A., Syntfeld-Kazuch A., Szczesniak T., Kamada K., Tsutsumi K., Usuki Y., Yanagida T., Yoshikawa A. Light Yield Non-Proportionality and Energy Resolution of Praseodymium Doped LuAG Scintillator. IEEE Trans. Nucl. Sci. 2009;56:934–938. doi: 10.1109/TNS.2009.2015590. DOI
Chewpraditkul W., Swidierski L., Moszynski M., Szczesniak T., Syntfeld-Kazuch A., Wanarak C., Limsuwan P. Scintillation properties of LuAG:Ce, YAG:Ce and LYSO:Ce crystals for gamma-ray detection. IEEE Trans. Nucl. Sci. 2009;56:3800–3805. doi: 10.1109/TNS.2009.2033994. DOI
Crytur Ltd.: Turnov, Czech Republic. [(accessed on 1 September 2022)]. Available online: www.crytur.cz.
Nikl M., Mihokova E., Pejchal J., Vedda A., Zorenko Y., Nejezchleb K. The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Phys. Status Solidi B. 2005;242:R119–R121. doi: 10.1002/pssb.200541225. DOI
Zorenko Y., Gorbenko V., Voloshinovskii A., Stryganyuk G., Mikhailin V., Kolobanov V., Spassky D., Nikl M., Blazek K. Exciton-related luminescence in LuAG:Ce single crystals and single crystalline films. Phys. Status Solidi B. 2005;202:1113–1119. doi: 10.1002/pssa.200420007. DOI
Ferrand B., Chambaz B., Couchaud M. Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media. Opt. Mater. 1999;11:101–114. doi: 10.1016/S0925-3467(98)00037-8. DOI
Levinstein H.J., Landorf R.W., Blank S.L. The growth of high quality garnet thin films for supercooled melts. Appl. Phys. Lett. 1971;19:486–488. doi: 10.1063/1.1653784. DOI
Gornert P., Bormann S., Voigt F., Wendt M. Study of the liquid phase epitaxy process of garnet layers by induced striations. Phys. Status Solidi A. 1977;41:505–511. doi: 10.1002/pssa.2210410221. DOI
Robertson J.M., van Tool M.V. Cathodoluminescent garnet layers. Thin Solid Film. 1984;114:221–240. doi: 10.1016/0040-6090(84)90341-9. DOI
Paul-Antoine D., Martin T., Riva F., Zorenko Y., Zorenko T., Paprocki K., Fedorov, Bilski P., Twardak A. Epitaxial growth of LuAG:Ce and LuAG:Ce,Pr films and their scintillation properties. IEEE Trans. Nucl. Sci. 2016;63:1726–1732.
Zorenko Y., Gorbenko V., Voznyak T., Savchyn V., Nizhankovskiy S., Dan’ko A., Puzikov V., Laguta V., Mares J.A., Nikl M., et al. Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films. Opt. Mater. 2012;34:2080–2085. doi: 10.1016/j.optmat.2012.04.018. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Sidletskiy O., Arhipov P., Fedorov A., Mareš J.A., Kučerková R., Nikl M., Zorenko Y. Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG. CrystEngComm. 2020;22:3713–3724. doi: 10.1039/D0CE00266F. DOI
Chewpraditkul W., Pattanaboonmee N., Chewpraditkul W., Szczesniak T., Moszynski M., Kamada K., Yoshikawa A., Kučerková R., Nikl M. Optical and scintillation properties of LuGd2Al2Ga3O12:Ce, Lu2GdAl2Ga3O12:Ce, and Lu2YAl2Ga3O12:Ce single crystals: A comparative study. NIM Phys. Res. A. 2021;1004:165381. doi: 10.1016/j.nima.2021.165381. DOI
Kamada K., Endo T., Tsutsumi K., Yanagida T., Fujimoto Y., Fukabori A., Yoshikawa A., Pejchal J., Nikl M. Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. Cryst. Growth Des. 2011;11:4484–4490. doi: 10.1021/cg200694a. DOI
Kamada K., Yanagida T., Pejchal J., Nikl M., Endo T., Tsutumi K., Fujimoto Y., Fukabori A., Yoshikawa A. Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J. Phys. D Appl. Phys. 2011;44:505104. doi: 10.1088/0022-3727/44/50/505104. DOI
Sidletskiy O., Gerasymov I., Kurtsev D., Kononets V., Pedash V., Zelenskaya O., Tarasov V., Gektin A., Grinyov B., Lebbou K., et al. Engineering of bulk and fiber-shaped YAGG:Ce scintillator crystals. CrystEngComm. 2017;19:1001–1007. doi: 10.1039/C6CE02330D. DOI
Vrubel I., Polozkov R.G., Shelykh I.A., Khanin V.M., Rodnyi P.A., Ronda C.R. Bandgap engineering in yttrium−aluminum garnet with Ga doping. Cryst. Growth Des. 2017;17:1863–1869. doi: 10.1021/acs.cgd.6b01822. DOI
Ueda J., Tanabe S., Nakanishi T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 2011;110:053102. doi: 10.1063/1.3632069. PubMed DOI PMC
Ogiegło J.M., Katelnikovas A., Zych A., Justel T., Meijerink A., Ronda C.R. Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+ J. Phys. Chem. A. 2013;117:2479–2484. doi: 10.1021/jp309572p. PubMed DOI
Ueda J., Aishima K., Tanabe S. Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 1, 2, 3) Opt. Mater. 2013;35:1952. doi: 10.1016/j.optmat.2012.11.016. DOI
Wu Y., Ren G. Energy transfer and radiative recombination processes in (Gd,Lu)3Ga3Al2O12: Pr3+ scintillators. Opt. Mater. 2013;35:2146. doi: 10.1016/j.optmat.2013.05.039. DOI
Khanin V., Venevtsev I., Chernenko K., Pankratov V., Klementiev K., van Swieten T., van Bunningen A.J., Vrubel I., Shendrik R., Ronda C., et al. Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics. J. Lumin. 2021;237:118150. doi: 10.1016/j.jlumin.2021.118150. DOI
Kamada K., Kurosawa S., Prusa P., Nikl M., Kochurikin V.V., Endo T., Tsutsumi K., Sato H., Yokota Y., Sugiyama K., et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 2014;36:1942–1945. doi: 10.1016/j.optmat.2014.04.001. DOI
Lucchini M.T., Babin V., Bohacek P., Gundacker S., Kamada K., Nikl M., Petrosyan A., Yoshikawa A., Auffray E. Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. A. 2016;816:176–183. doi: 10.1016/j.nima.2016.02.004. DOI
Korzhik M., Alenkov V., Buzanov O., Dosovitskiy G., Fedorov A., Kozlov D., Mechinsky V., Nargelas S., Tamulaitis G., Vaitkevičius A. Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5Y0.5)3Al2Ga3O12:Ce,Mg. CrystEngComm. 2020;22:2502–2506. doi: 10.1039/D0CE00105H. DOI
Pankratova V., Kozlova A.P., Buzanov O.A., Chernenko K., Shendrik R., Šarakovskis A., Pankratov V. Time-resolved luminescence and excitation spectroscopy of co-doped Gd3Ga3Al2O12 scintillating crystals. Sci. Rep. 2020;10:20388. doi: 10.1038/s41598-020-77451-x. PubMed DOI PMC
Spassky D., Fedyunin F., Rubtsova E., Tarabrina N., Morozov V., Dzhevakov P., Chernenko K., Kozlova N., Zabelina E., Kasimova V., et al. Structural, optical and luminescent properties of undoped Gd3Al-xGa5-xO12 (x = 0,1,2,3) and Gd2YAl2Ga3O12 single crystals. Opt. Mater. 2022;125:112079. doi: 10.1016/j.optmat.2022.112079. DOI
Nargelas S., Talochka Y., Vaitkevicius A., Dosovitskiy G., Buzanov O., Vasil’ev A., Malinauskas T., Korzhik M., Tamulaitis G. Influence of matrix composition and its fluctuations on excitation relaxation and emission spectrum of Ce ions in (GdxY1-x)3Al2Ga3 O12(GdxY1-x)3Al2Ga3O12:Ce scintillators. J. Lumin. 2022;242:118590. doi: 10.1016/j.jlumin.2021.118590. DOI
Martinazzoli L., Kratochwil N., Gundacker S., Auffray E. Scintillation properties and timing performance of state-of-the-art Gd3Al2Ga3O12 single crystals. Nucl. Instrum. Methods Phys. Res. A. 2021;1000:165231. doi: 10.1016/j.nima.2021.165231. DOI
Drozdowski W., Brylew K., Witkowski M.E., Wojtowicz A.J., Solarz P., Kamada K., Yoshikawa A. Studies of light yield as a function of temperature and low temperature thermoluminescence of Gd3Al2Ga3O12:Ce scintillator crystals. Opt. Mater. 2014;36:1665–1669. doi: 10.1016/j.optmat.2013.12.044. DOI
Prusa P., Kamada K., Nikl M., Yoshikawa A., Mares J.A. Light yield of (Lu, Y, Gd)3Al2Ga3O12:Ce garnets. Radiat. Meas. 2013;56:62–65. doi: 10.1016/j.radmeas.2013.01.055. DOI
Yoshikawa A., Kamada K., Kurosawa S., Shoji Y., Yokota Y., Chani V.I., Nikl M. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS. J. Lumin. 2016;169:387–393. doi: 10.1016/j.jlumin.2015.04.001. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Paprocki K., Sidletskiy O., Fedorov A., Kucerkova R., Mares J.A., Nikl M., Zorenko Y. Epitaxial growth of composite scintillators based on Tb3Al5O12:Ce single crystalline films and Gd3Al2.5Ga2.5O12:Ce crystal substrates. CrystEngComm. 2018;20:3994–4002. doi: 10.1039/C8CE00536B. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Sidletskiy O., Gerasymov I., Fedorov A., Yoshikawa A., Mares J.A., Yu Z. Development of composite scintillators based on single crystalline films and crystals of Ce3+-doped (Lu,Gd)3(Al,Ga)5O12 mixed garnet compounds. Cryst. Growth Des. 2018;18:1834–1842. doi: 10.1021/acs.cgd.7b01695. DOI
Kucera M., Hanus M., Onderisinova Z., Prusa P., Beitlerova A., Nikl M. Energy Transfer and Scintillation Properties of Ce3+ Doped (LuYGd)3(AlGa)5O12 Multicomponent Garnets. IEEE Trans. Nucl. Sci. 2014;61:282–289. doi: 10.1109/TNS.2013.2281234. DOI
Průša P., Kucera M., Mares J.A., Hanus M., Beitlerova A., Onderisinova Z., Nikl M. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films. Opt. Mater. 2013;35:2444–2448. doi: 10.1016/j.optmat.2013.06.051. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Syrotych Y., Mareš J.A., Nikl M., Zorenko Y., Sidletskiy O., Yoshikawa A., Bilski P. Composite detectors based on single crystalline films and single crystals of garnet compounds. Materials. 2022;15:1249. doi: 10.3390/ma15031249. PubMed DOI PMC
Gorbenko V., Łukaszek S.W., Zorenko T., Syrotych Y., Mareš J.A., Kučerková R., Nikl M., Sidletskiy O., Fedorov A., Zorenko Y. Development of Composite Scintillators Based on the LuAG:Pr Single Crystalline Films and LuAG:Sc Single Crystal. Crystals. 2021;11:846. doi: 10.3390/cryst11080846. DOI
Glenn F. Knoll, Radiation Detection and Measurements. 3rd ed. John Wiley & Sons, Inc.; New York, NY, USA: 2000.
Prusa P., Nikl M., Mares J.A., Kucera M., Nitsch K., Beitlerova A. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy. Phys. Status Solidi A. 2009;206:1494–1500. doi: 10.1002/pssa.200825050. DOI
Mares J.A., Witkiewicz-Lukaszek S., Gorbenkob V., Zorenko T., Kucerkova R., Beitlerova A., D′Ambrosio C., Dlouhy J., Nikl M., Zorenko Y. Alpha and gamma spectroscopy of composite scintillators based on the LuAG:Pr crystals and single crystalline films of LuAG:Ce and (Lu,Gd,Tb)AG:Ce garnets. Opt. Mater. 2019;96:109268. doi: 10.1016/j.optmat.2019.109268. DOI
D′Ambrosio C., Leutz H. Hybrid photon detectors. NIM Phys. Res. A. 2003;501:463–498. doi: 10.1016/S0168-9002(03)00431-5. DOI
Mares J.A., D’Ambrosio C. Hybrid photomultipliers—Their properties and application in scintillation studies. Opt. Mater. 2007;30:22–25. doi: 10.1016/j.optmat.2006.10.017. DOI
van Loef E.V.D. Ph.D. Thesis. Delft University of Technology; Delft, The Netherland: 2003. Halide Scintillators.
Moszynski M., Szczesniak T., Kapusta M., Szawlowski M., Iwanowska J., Gierlik M., Syntfeld-Kazuch A., Swidierski M., Melcher C.L., Ericsson L.A., et al. Characterization of scintillators by modern photomultipliers—A new source of errors. IEEE Trans. Nucl. Sci. 2010;57:1367–1374. doi: 10.1109/TNS.2010.2054111. DOI
Wolszczak W., Dorenbos P. Nonproportional response of scintillators to alpha particle excitation. IEEE Trans. Nucl. Sci. 2017;64:1580–1591.
Chu S., Ekström L., Firestone R. The Lund/LBNL Nuclear Data Search. [(accessed on 1 September 2022)]. Available online: http://nucleardata.nuclear.lu.se/toi/
XCOM: Photon Cross Section Database. [(accessed on 1 September 2022)]; Available online: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.
Valentine J., Rooney B., Li J. The light yield nonproportionality component of scintillator energy resolution. IEEE Trans. Nucl. Sci. 1998;45:512–517. doi: 10.1109/23.682438. DOI
Sidletskyi O., Gorbenko V., Zorenko T., Syrotych Y., Witkiewicz-Lukaszek S., Mares J.A., Kucerkova R., Nikl M., Gerasymov I., Kurtsev D., et al. Composition engineering of (Lu,Gd,Tb)3(Al,Ga)5O12 Substrate Scintillators. Crystals. 2022;12:1366. doi: 10.3390/cryst12101366. DOI
Kamada K., Prusa P., Nikl M., Piemonte C., Tarolli A., Yanagida T., Endo T., Tsutumi K., Yoshikawa A. 2-inch size crystal growth of Ce:Gd3Al2Ga3O12 with various Ce concentration and their scintillation properties; Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) N26-5; Anaheim, CA, USA. 27 October–3 November 2012.