Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2016/21/B/ST8/03200
Polish National Centre
2018/31/B/ST8/03390
Polish National Centre
PubMed
35161191
PubMed Central
PMC8838017
DOI
10.3390/ma15031249
PII: ma15031249
Knihovny.cz E-zdroje
- Klíčová slova
- composite detectors, crystals, garnets, liquid-phase epitaxy, scintillators, single-crystalline films, substrates, thermoluminescence,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This manuscript summarizes recent results on the development of composite luminescent materials based on the single-crystalline films and single crystals of simple and mixed garnet compounds obtained by the liquid-phase epitaxy growth method. Such composite materials can be applied as scintillating and thermoluminescent (TL) detectors for radiation monitoring of mixed ionization fluxes, as well as scintillation screens in the microimaging techniques. The film and crystal parts of composite detectors were fabricated from efficient scintillation/TL materials based on Ce3+-, Pr3+-, and Sc3+-doped Lu3Al5O12 garnets, as well as Ce3+-doped Gd3-xAxAl5-yGayO12 mixed garnets, where A = Lu or Tb; x = 0-1; y = 2-3 with significantly different scintillation decay or positions of the main peaks in their TL glow curves. This work also summarizes the results of optical study of films, crystals, and epitaxial structures of these garnet compounds using absorption, cathodoluminescence, and photoluminescence. The scintillation and TL properties of the developed materials under α- and β-particles and γ-quanta excitations were studied as well. The most efficient variants of the composite scintillation and TL detectors for monitoring of composition of mixed beams of ionizing radiation were selected based on the results of this complex study.
Centre of Excellence ENSEMBLE3 Sp z o o ul Wolczynska 133 01 919 Warsaw Poland
Institute for Materials Research Tohoku University 2 1 1 Katahira Aoba ku Sendai 980 8577 Japan
Institute for Scintillation Materials National Academy of Sciences of Ukraine 61072 Kharkiv Ukraine
Institute of Nuclear Physics Polish Academy of Sciences 31 342 Krakow Poland
Zobrazit více v PubMed
Zorenko Y., Novosad S.S., Pashkovskii M.V., Lyskovich A.B., Savitskii V.G., Batenchuk M.M., Malyutenkov P.S., Patsagan N.I., Nazar I.V., Gorbenko V.I. Epitaxial structures of garnets as scintillation detectors of ionizing radiation. J. Appl. Spectrosc. 1990;52:645–649. doi: 10.1007/BF00662203. DOI
Ferrand B., Chambazand B., Couchaud M. Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media. Opt. Mater. 1999;11:101–114. doi: 10.1016/S0925-3467(98)00037-8. DOI
Zazubovich S., Krasnikov A., Zorenko Y., Gorbenko V., Babin V., Mihokova E., Nikl M. Nanocomposite, Ceramic, and Thin Film Scintillators. Pan Stanford Publishing Pte. Ltd.; Singapore: 2016. pp. 227–305.
Robertson J.M., Van Tol M.V. Cathodoluminescent garnet layers. Thin Solid Film. 1984;114:221–240. doi: 10.1016/0040-6090(84)90341-9. DOI
Hrytskiv Z.D., Zorenko Y., Gorbenko V., Pedanand A.D., Shkliarsyi V.I. Single crystalline film screens for cathode-ray tubes: New life of television scanning optical microscopy. Radiat. Meas. 2007;42:933–936. doi: 10.1016/j.radmeas.2007.02.043. DOI
Schauer P., Lalinský O., Kucera M. Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits. Microsc. Res. Tech. 2021;84:753–770. doi: 10.1002/jemt.23634. PubMed DOI
Molva E. Microchip lasers and their applications in optical microsystems. Opt. Mater. 1999;11:289–299. doi: 10.1016/S0925-3467(98)00050-0. DOI
Klimczak M., Malinowski M., Sarnecki J., Piramidowicz R.J. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides. Luminescence. 2009;129:1869–1873. doi: 10.1016/j.jlumin.2009.04.073. DOI
Zorenko Y., Batenchuk M., Gorbenko V., Pashkovsky M. Single-crystalline oxide films of the Al2O3-Y2O3-R2O3 system as optical sensors of various types of ionizing radiation: Significant advantages over volume analogs. Proc. SPIE. 1997;2967:101. doi: 10.1117/12.266516. DOI
Zorenko Y., Gorbenko V., Konstankevych I., Grinevand B., Globus M. Scintillation properties of Lu3Al5O12:Ce single-crystalline films. Nucl. Instrum. Methods Phys. Res. 2002;486:309–314. doi: 10.1016/S0168-9002(02)00725-8. DOI
Koch A., Raven C., Spanne P., Snigirev A. X-ray imaging with submicrometer resolution employing transparent luminescent screens. J. Opt. Soc. Amer. A Opt. 1998;15:1940–1951. doi: 10.1364/JOSAA.15.001940. DOI
Martin T., Koch A. Recent developments in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006;13:180–194. doi: 10.1107/S0909049506000550. PubMed DOI
Zorenko Y., Gorbenko V., Konstankevych I., Pashkovsky M., Globus M., Grinyov B., Tarasov V., Dorenbos P., Van Eijk C., Van Loef E. Scintillators on the base of single crystalline films of Al2O3-Y2O3 system oxides; Proceedings of the 5th International Conference on Inorganic Scintillators and Their Applications, Moscow State University; Moscow, Russia. 6–20 August 1999; pp. 476–481.
Globus M., Grinyov B., Ratner M., Tarasov V., Lyubinskiy V., Vydai Y., Ananenko A., Zorenko Y., Gorbenko V., Konstankevych I. New type of scintillation detectors for biological, medical, and radiation monitoring applications. IEEE Trans. Nucl. Sci. 2004;51:1297–1303. doi: 10.1109/TNS.2004.830113. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Paprocki K., Sidletskiy O., Gerasymov I., Mares J.A., Kucerkova R., Nikl M., Zorenko Y. Novel all-solid-state composite scintillators based on the epitaxial structures of LuAG garnet doped with Pr, Sc and Ce ions. IEEE Trans. Nucl. Sci. 2018;65:2114–2119. doi: 10.1109/TNS.2018.2838333. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Paprocki K., Sidletskiy O., Gerasymov I., Mares J.A., Kucerkova R., Nikl M., Zorenko Y. Composite scintillators based on the crystals and single crystalline films of LuAG garnet doped with Ce3+, Pr3+ and Sc3+ ions. Opt. Mater. 2018;84:593–599. doi: 10.1016/j.optmat.2018.07.066. DOI
Mares J.A., Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Kucerkova R., Beitlerova A., D′Ambrosio C., Dlouhy J., Nikl M., Zorenko Y. Alpha and gamma spectroscopy of Composite scintillators based on the LuAG:Pr crystals and single crystalline films of LuAG:Ce and (Lu,Gd,Tb)AG:Ce garnets. Opt. Mater. 2019;96:109268. doi: 10.1016/j.optmat.2019.109268. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Sidletskiy O., Arhipov P., Fedorov A., Mares J.A., Kucerkova R., Nikl M. Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG. CrystEngComm. 2020;22:3713–3724. doi: 10.1039/D0CE00266F. DOI
Gorbenko V., Witkiewicz-Lukaszek S., Zorenko T., Syrotych Y., Mares J.A., Kucerkova R., Nikl M., Sidletskiy O., Fedorov A., Zorenko Y. Development of composite scintillators based on the LuAG:Pr single crystalline films FILMS and LuAG:Sc single crystals. Crystals. 2021;11:846. doi: 10.3390/cryst11080846. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Sidletskiy O., Gerasymov I., Fedorov A., Yoshikawa A., Mares J.A., Nikl M., Zorenko Y. Development of composite scintillators Based on single crystalline films and Crystals of Ce3+-Doped (Lu,Gd)3(Al, Ga)5O12 Mixed Garnet Compounds. Cryst. Growth Des. 2018;18:1834–1842. doi: 10.1021/acs.cgd.7b01695. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Paprocki K., Sidletskiy O., Fedorov A., Kucerkova R., Mares J.A., Nikl M., Zorenko Y. Epitaxial growth of composite scintillators based on Tb3Al5O12:Ce single crystalline films and Gd3Al2.5Ga2.5O12:Ce crystal substrates. CrystEngComm. 2018;20:3994–4002. doi: 10.1039/C8CE00536B. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Syrotych Y., Kucerkova R., Mares J.A., Nikl M., Sidletskiy O., Fedorov A., Kurosawa S., et al. New types of composite scintillators based on the single crystalline films and crystals of Gd3(Al,Ga)5O12:Ce mixed garnets. Mater. Sci. Eng. B. 2021;264:114909. doi: 10.1016/j.mseb.2020.114909. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Bilski P., Mrozik A., Zorenko T., Fedorov A., Zorenko Y. LPE growth of composite thermoluminescent detectors based on the Lu3−xGdxAl5O12: Single crystalline films and YAG:Ce crystals. Crystals. 2020;10:189. doi: 10.3390/cryst10030189. DOI
Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Zorenko Y., Gieszczyk W., Mrozik A., Bilski P. Composite thermoluminescent detectors based on the Ce3+ doped LuAG/YAG and YAG/LuAG epitaxial structures. Radiat. Meas. 2019;128:106124. doi: 10.1016/j.radmeas.2019.106124. DOI
Zorenko Y., Gorbenko V., Savchyn V., Fedorov A., Kuklinski B., Grinberg M., Bilski P., Gieszczyk W., Twardak A., Mandowski A., et al. Luminescent properties of YAlO3:Mn single crystalline films. Opt. Mater. 2012;34:1979–1983. doi: 10.1016/j.optmat.2011.12.003. DOI
Gieszczyk W., Bilski P., Kłosowski M., Mrozik A., Zorenko Y., Zorenko T., Paprocki K. Luminescent properties of undoped and Ce3+ doped crystals in Y2O3–Lu2O3-Al2O3 triple oxide system grown by micro-pulling-down method. Opt. Mater. 2019;89:408–413. doi: 10.1016/j.optmat.2019.01.023. DOI
Zorenko Y., Gorbenko V. Growth peculiarities of the R3Al5O12 (R= Lu, Yb, Tb, Eu-Y) single crystalline film phosphors by Liquid Phase Epitaxy. Radiat. Meas. 2007;42:907–910. doi: 10.1016/j.radmeas.2007.02.049. DOI
Gorbenko V., Zorenko T., Pawlowski P., Iskaliyeva A., Paprocki K., Suchocki A., Zhydachevskii Y., Fedorov A., Khaidukov N., Van Deun R., et al. Luminescent and scintillation properties of Ce3+ doped Ca2RMgScSi3O12 (R=Y, Lu) single crystalline films. J. Lumin. 2018;195:362–370. doi: 10.1016/j.jlumin.2017.11.052. DOI
Zorenko Y., Gorbenko V., Witkiewicz S., Zorenko Y. Luminescent properties of (La,Lu,Gd)3(Al,Sc,Ga)5O12:Ce mixed garnets under synchrotron radiation excitation. J. Lumin. 2018;199:483–487. doi: 10.1016/j.jlumin.2018.03.093. DOI
Chen R., Pagonis V., editors. Advances in Physics and Applications of Optically and Thermally Stimulated Luminescence. World Scientific, WSPC (Europe); Singapore: Mar 19, 2019. pp. 285–317. DOI
Yukihara E., Kron T. Thermoluminescence dosimetry (TLD) in medicine: Five ‘w’s and one how. Radiat. Prot. Dosim. 2020;192:139–151. doi: 10.1093/rpd/ncaa212. PubMed DOI
Bilski P. Lithium Fluoride: From LiF:Mg,Ti to LiF:Mg,Cu,P. Radiat. Prot. Dosim. 2002;100:199–203. doi: 10.1093/oxfordjournals.rpd.a005847. PubMed DOI
Horowitz Y.S. Thermoluminescence dosimetry: State-of-the-art and frontiers of future research. Radiat. Meas. 2014;71:2–7. doi: 10.1016/j.radmeas.2014.01.002. DOI
Bilski P., Olko P., Burgkhardt B., Piesch E. Ultra-Thin LiF:Mg,Cu,P Detectors for Beta Dosimetry. Radiat. Meas. 1995;24:439–443. doi: 10.1016/1350-4487(94)00125-K. DOI
Bilski P., Budzanowski M., Olko P., Christensen P. Properties of Different Thin-Layer LiF:Mg,Cu,P TL Detectors for Beta Dosimetry. Radiat. Prot. Dosim. 1996;66:101–104. doi: 10.1093/oxfordjournals.rpd.a031693. DOI
Bueno M., Carrasco P., Jornet N., Munoz-Montplet C., Duch M.A. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities. Med. Phys. 2014;41:142–153. doi: 10.1118/1.4886760. PubMed DOI
Grassi E., Sghedoni R., Piccagli V., Fioroni F., Borasi G., Iori M. Comparison of two different types of LiF:Mg,Cu,P thermoluminescent dosimeters for detection of beta rays (beta-TLDs) from Sr-90/Y-90, K-85 and Pm-147 sources. Health Phys. 2011;100:515–522. doi: 10.1097/HP.0b013e3182092732. PubMed DOI
Goksu H.Y., Bulur E., Wahl W. Beta dosimetry using thin-layer alpha-Al2O3:C TL detectors. Radiat. Prot. Dosim. 1999;84:451–455. doi: 10.1093/oxfordjournals.rpd.a032775. DOI
Twardak A., Bilski P., Zorenko Y., Gorbenko V., Mandowski A., Mandowska E., Sidletskiy O. Comparative study of TSL and OSL properties of LSO and LSO:Ce single crystals and single crystalline films. Radiat. Meas. 2013;56:196–199. doi: 10.1016/j.radmeas.2013.01.063. DOI
Nikl M., Tous T., Mares J.A., Prusa P., Mihokova E., Blazek K., Vedda A., Zorenko Y., Gorbenko V., Babin V. Lu3Al5O12-based materials for high 2D-resolution scintillation detectors. Proc. SPIE. 2009;7310:731008. doi: 10.1117/12.818358. DOI
Nikl M., Yoshikawa A., Kamada K., Stanek C.R., Blazek K. Development of LuAG-based scintillator crystals—A review. Prog. Cryst. Growth Charact. Mater. 2013;59:47–72. doi: 10.1016/j.pcrysgrow.2013.02.001. DOI
Kamada K., Yanagida T., Pejchal J., Nikl M., Endo T., Tsutsumi K., Fujimoto Y., Fukabori A., Yoshikawa A. Crystal growth and scintillation properties of Ce doped Gd3Al2Ga3O12 single crystals. IEEE Trans. Nucl. Sci. 2012;59:2112–2115. doi: 10.1109/TNS.2012.2197024. DOI
Crytur Integrated Crystal Based Solutions. [(accessed on 24 November 2021)]. Available online: www.crytur.cz.
Advatech—Radiation Detection/Imaging and Photonics. [(accessed on 24 November 2021)]. Available online: www.advatech-uk.co.uk.
Vrubel I., Polozkov R., Shelykh I., Khanin V., Rodnyi P., Ronda C. Bandgap Engineering in Yttrium−Aluminum Garnet with Ga Doping. Cryst. Growth Des. 2017;17:1863–1869. doi: 10.1021/acs.cgd.6b01822. DOI
Li M., Meng M., Chen J., Sun Y., Cheng G., Chen L., Zhao S., Wan B., Feng H., Ren G., et al. Abnormal Site Preference of Al and Ga in Gd3Al2.3Ga2.7O12:Ce. Phys. Status Solidi B. 2021;258:2000603. doi: 10.1002/pssb.202000603. DOI
Nargelas S., Talochka Y., Vaitkevicius A., Dosovitskiy G., Buzanov O., Vasil’ev A., Malinauskas T., Korzhik M., Tamulaitis G. Influence of matrix composition and its fluctuations on excitation relaxation and emission spectrum of Ce ions in (GdxY1-x)3 Al2Ga3O12:Ce scintillators. J. Lumin. 2022;242:118590. doi: 10.1016/j.jlumin.2021.118590. DOI
Khanin V., Venevtsev I., Chernenko K., Pankratov V., Klementiev K., van Swieten T., van Bunningen A.J., Vrubel I., Shendrik R., Ronda C., et al. Exciton interaction with Ce3+ and Ce4+ ions in (LuGd)3(Ga,Al)5O12 ceramics. J. Lumin. 2021;237:118150. doi: 10.1016/j.jlumin.2021.118150. DOI
Korzhik M., Alenkov V., Buzanov O., Dosovitskiy G., Fedorov A., Kozlov D., Mechinsky V., Nargelas S., Tamulaitis G., Vaitkevičius A. Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5–Y0.5)3Al2Ga3O12:Ce,Mg. CrystEngComm. 2020;22:2502–2506. doi: 10.1039/D0CE00105H. DOI
Pankratova V., Kozlova A., Buzanov O., Chernenko K., Shendrik R., Šarakovskis A., Pankratov V. Time-resolved luminescence and excitation spectroscopy of Co-doped Gd3Ga3Al2O12 scintillating crystals. Sci. Rep. 2020;10:20388. doi: 10.1038/s41598-020-77451-x. PubMed DOI PMC
Dantelle G., Boulon G., Guyot Y., Testemale D., Guzik M., Kurosawa S., Kamada K., Yoshikawa A. Research on Efficient Fast Scintillators: Evidence and X-Ray Absorption Near Edge Spectroscopy Characterization of Ce4+ in Ce3+, Mg2+-Co-Doped Gd3Al2Ga3O12 Garnet Crystal. Phys. Status Solidi B. 2019;257:1900510. doi: 10.1002/pssb.201900510. DOI
Bárta J., Pestovich K.S., Valdez J.A., Wiggins B.W., Richards C., Smith E., Clayton J.H., Smalley D., McClellan K.J. Compositional screening of Ce-doped (Gd,Lu,Y)3(Al,Ga)5O12 ceramics prepared by quenching from melt and their luminescence properties. J. Alloys Compd. 2021;889:161687. doi: 10.1016/j.jallcom.2021.161687. DOI
Nakauchi D., Okada G., Kawano N., Kawaguchi N., Yanagida T. Effects of Ga substitution in Ce:Tb3GaxAl5%xO12 single crystals for scintillator applications. Jpn. J. Appl. Phys. 2018;57:02CB02. doi: 10.7567/JJAP.57.02CB02. DOI
Boyarintseva Y., Neicheva S., Zhmurin P., Arhipov P., Gerasymov I., Tkachenko S., Sidletskiy O., Baumer V., Vovk O., Nizhankovskyi S. Optical study of Y3-xGdxAl5O12:Ce crystals grown from the melt. Opt. Mater. 2019;96:109283. doi: 10.1016/j.optmat.2019.109283. DOI
Gerasymov I., Nepokupnaya T., Boyarintsev A., Sidletskiy O., Kurtsev D., Voloshyna O., Trubaieva O., Boyarintseva Y., Sibilieva T., Shaposhnyk A., et al. GAGG:Ce composite scintillator for X-ray imaging. Opt. Mater. 2020;109:110305. doi: 10.1016/j.optmat.2020.110305. DOI
Nikl M., Mihokova E., Pejchal J., Vedda A., Zorenko Y., Nejezchleb K. The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Phys. Status Solidi B. 2005;242:119–121. doi: 10.1002/pssb.200541225. DOI
Fasoli M., Vedda A., Nikl M., Jiang C., Uberuaga B., Andersson D.A., McClellan K.J., Stanek C.R. Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping. Phys. Rev. B. 2011;84:081102(R). doi: 10.1103/PhysRevB.84.081102. DOI
Nikl M., Yoshikawa A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015;3:463–481. doi: 10.1002/adom.201400571. DOI
Zorenko Y., Gorbenko V., Savchyn V., Zorenko T., Fedorov A., Wrzesiński H., Vasylkiv Y. Multi-component Ce doped (Gd,Y,La,Lu)3(Al,Ga,Sc)5O12 garnets—A new story in the development of scintillating single crystalline film screens. Radiat. Meas. 2013;56:150–154. doi: 10.1016/j.radmeas.2013.03.011. DOI
Zorenko Y., Gorbenko V., Savchyn V., Zorenko T., Fedorov A., Sidletskiy O. Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multicomponent garnets. J. Cryst. Growth. 2014;401:532–536. doi: 10.1016/j.jcrysgro.2014.01.075. DOI
Prusa P., Kucera M., Mares J.A., Hanus M., Beitlerova A., Onderisinova Z., Nikl M. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films. Opt. Mater. 2013;35:2444–2448. doi: 10.1016/j.optmat.2013.06.051. DOI
Zorenko Y., Gorbenko V., Vasylkiv J., Zelenyj A., Fedorov A., Kucerkova R., Mares J.A., Nikl M., Bilski P., Twardak A. Growth and luminescent properties of scintillators based on the single crystalline films of Lu3−xGdxAl5O12:Ce garnet. Mater. Res. Bull. 2015;64:355–363. doi: 10.1016/j.materresbull.2015.01.020. DOI
Zorenko Y., Gorbenko V., Vasylkiv J., Strzyzewski T., Fedorov A., Kucerkova R., Mares J.A., Nikl M., Bilski P., Twardak A. Growth and luminescent properties of scintillators based on the single crystalline films of (Lu,Gd)3(Al,Ga)5O12:Ce garnets. J. Lumin. 2016;169:828–837. doi: 10.1016/j.jlumin.2014.11.040. DOI
Zorenko Y., Gorbenko V., Zorenko T., Sidletskiy O., Fedorov A., Bilski P., Twardak A., Bilski P. High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators. Phys. Status Solidi RRL. 2015;9:489–493. doi: 10.1002/pssr.201510225. DOI
Prusa P., Kucera M., Mares J.A., Onderisinova Z., Hanus M., Babin V., Beitlerova A., Nikl M. Composition Tailoring in Ce-Doped Multicomponent Garnet Epitaxial Film Scintillators. Cryst. Growth Des. 2015;15:3715–3723. doi: 10.1021/acs.cgd.5b00309. DOI
Zorenko Y., Gorbenko V., Zorenko T., Paprocki K., Nikl M., Mares J.A., Bilski P., Twardak A., Sidletskiy O., Gerasymov I., et al. Scintillating screens based on the single crystalline films of multicomponent garnets: New achievements and possibilities. IEEE Trans. Nucl. Sci. 2016;63:497–502. doi: 10.1109/TNS.2015.2514062. DOI
Zorenko Y., Gorbenko V., Zorenko T., Paprocki K., Bilski P., Twardak A., Voznyak T., Sidletskiy O., Gerasimov Y., Gryniov B., et al. Composition engineering of single crystalline films based on the multicomponent garnet compounds. Opt. Mater. 2016;61:3–10. doi: 10.1016/j.optmat.2016.03.031. DOI
Zorenko Y., Douissard P., Martin T., Riva F., Gorbenko V., Zorenko T., Paprocki K., Iskalieva A., Witkiewicz S., Fedorov A., et al. Scintillating screens based on the LPE grown Tb3Al5O12:Ce single crystalline films. Opt. Mater. 2017;65:73–81. doi: 10.1016/j.optmat.2016.09.066. DOI
Gorbenko V., Zorenko T., Witkiewicz S., Paprocki K., Sidletskiy O., Fedorov A., Bilski P., Twardak A., Zorenko Y. LPE growth of single crystalline film scintillators based on Ce3+ Doped Tb3−xGdxAl5−yGayO12 mixed garnets. Crystals. 2017;7:262. doi: 10.3390/cryst7090262. DOI
Babin V., Herman P., Kucera M., Nikl M., Zazubovich S. Effect of Mg2+ co-doping on the photo- and thermally stimulated luminescence of the (Lu,Gd)3(Ga,Al)5O12:Ce epitaxial films. J. Lumin. 2019;215:116608. doi: 10.1016/j.jlumin.2019.116608. DOI
Lalinsky O., Schauer P., Kucera M. Influence of Mg-to-Ce Concentration Ratio on Cathodoluminescence in LuAG and LuGAGG Single-Crystalline Films. Phys. Status Solidi A. 2019;216:1801016. doi: 10.1002/pssa.201801016. DOI
Prusa P., Kučera M., Babin V., Bruza P., Parkman T., Panek D., Beitlerova A., Mares J.A., Hanus M., Lučeničová Z., et al. Tailoring and Optimization of LuAG:Ce Epitaxial Film Scintillation Properties by Mg Co-Doping. Cryst. Growth Des. 2018;18:4998–5007. doi: 10.1021/acs.cgd.8b00411. DOI
Schauer P., Lalinský O., Kučera M., Lučeničová Z., Hanuš M. Effect of Mg co-doping on cathodoluminescence properties of LuGAGG:Ce single crystalline garnet films. Opt. Mater. 2017;72:359–366. doi: 10.1016/j.optmat.2017.06.028. DOI
Babin V., Boháček P., Jurek K., Kučera M., Nikl M., Zazubovich S. Dependence of Ce3+—Related photo- and thermally stimulated luminescence characteristics on Mg2+ content in single crystals and epitaxial films of Gd3(Ga,Al)5O12:Ce,Mg. Opt. Mater. 2017;83:290–299. doi: 10.1016/j.optmat.2018.05.087. DOI
Zorenko Y., Gorbenko V., Savchyn V., Zorenko T., Grinyov B., Sidletskiy O., Fedorov A. Growth and luminescent properties of Ce and Ce-Tb doped (Y,Lu,Gd)2SiO5:Ce SINGLE CRYSTALLINE FILMS. J. Cryst. Growth. 2014;401:577–583. doi: 10.1016/j.jcrysgro.2014.01.066. DOI
Zorenko Y., Gorbenko V., Zorenko T., Malinowski P., Jary V., Kucerkova R., Beitlerova A., Mares J.A., Nikl M., Fedorov A. Luminescent and scintillation properties of Bi3+ doped Y2SiO5 and Lu2SiO5 single crystalline films. J. Lumin. 2014;154:525–530. doi: 10.1016/j.jlumin.2014.05.030. DOI
Kilian A., Bilski P., Gorbenko V., Zorenko T., Witkiewicz S., Paprocki K., Zorenko Y. Thermoluminescent properties of cerium doped Lu2SO5 and Y2SiO5 single crystalline films grown from PbO-B2O3 and Bi2O3 fluxes. Crystals. 2018;8:120. doi: 10.3390/cryst8030120. DOI
Kurosawa S., Yoshikawa A., Gorbenko V., Zorenko T., Witkiewicz-Lukaszek S., Zorenko Y. Composite scintillators based on the films and crystals of (Lu,Gd,La)2Si2O7 pyrosilicates. IEEE Trans. Nucl. Sci. 2020;67:994–998. doi: 10.1109/TNS.2020.2983657. DOI
Zorenko Y., Gorbenko V., Konstankevych I., Voznjak T., Savchyn V., Nikl M., Mares J.A., Nejezchleb K., Mikhailin V., Kolobanov V., et al. Peculiarities of luminescence and scintillation properties of YAP:Ce and LuAP:Ce single crystals and single crystalline films. Radiat. Meas. 2007;42:528–532. doi: 10.1016/j.radmeas.2007.01.046. DOI
Zorenko Y., Gorbenko V., Zorenko T., Voznyak T., Riva F., Douissard P., Martin T., Fedorov A., Suchocki A., Zhydachevskii Y. Growth and luminescent properties of single crystalline films of Ce3+ doped Pr1-xLuxAlO3 and Gd1-xLuxAlO3 perovskites. J. Cryst. Growth. 2017;457:220–226. doi: 10.1016/j.jcrysgro.2016.02.020. DOI
Riva F., Douissard P.-A., Martin T., Carla F., Zorenko Y.V., Dujardin C. Epitaxial growth of gadolinium and lutetium-based aluminum perovskites thin film for X-rays micro-imaging applications. CrystEngComm. 2016;18:608–615. doi: 10.1039/C5CE01938A. DOI
Gorbenko V., Zorenko T., Paprocki K., Riva F., Douissard P.A., Martin T., Zhydachevskii Y., Suchocki A., Fedorov A., Zorenko Y. Epitaxial growth of the single crystalline films scintillating screens based on the Eu3+ doped RAlO3 (R= Y, Lu, Gd, Tb) perovskites. CrystEngComm. 2018;20:937–945. doi: 10.1039/C7CE02074K. DOI
Zorenko Y.V. Luminescence of the mercury-like impurities in the CdWO4 single-crystalline compounds. J. Appl. Spectrosc. 1998;65:211–215. doi: 10.1007/BF02680472. DOI
Zorenko Y., Gorbenko V., Voznyak T., Konstankevych I., Savchyn V., Batentschuk M., Winnacker A., Brabec C.J. Scintillators based on CdWO4 and CdWO4:Bi single crystalline films. IEEE Trans. Nucl. Sci. 2012;59:2281–2285. doi: 10.1109/TNS.2012.2201171. DOI