Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Czech Academy of Sciences, RVO:68081731
LO1212
Ministry of Education, Youth and Sports of the Czech Republic
CZ.1.05/2.1.00/01.0017
Ministry of Education, Youth and Sports of the Czech Republic and European Commission
TRIO FV30271
Ministry of Industry and Trade of the Czech Republic
PubMed
33135847
DOI
10.1002/jemt.23634
Knihovny.cz E-zdroje
- Klíčová slova
- SEM electron detector, cathodoluminescence, conductive coating, garnet film scintillator, light guide,
- Publikační typ
- časopisecké články MeSH
The paper is focused on a complete configuration and design of a scintillation electron detector in scanning electron and/or scanning transmission electron microscopes (S(T)EM) with garnet scintillators. All processes related to the scintillator and light guide were analyzed. In more detail, excitation electron trajectories and absorbed energy distributions, efficiencies and kinetics of scintillators, as well as the influence of their anti-charging coatings and their substrates, assigned optical properties, and light guide efficiencies of different configurations were presented and discussed. The results indicate problems with low-energy detection below 1 keV when the scandium conductive coating with a thickness of only 3 nm must be used to allow electron penetration without significant losses. It was shown that the short rise and decay time and low afterglow of LuGdGaAG:Ce liquid-phase epitaxy garnet film scintillators guarantee a strong modulation transfer function of the entire imaging system resulting in a contrast transfer ability up to 0.6 lp/pixel. Small film scintillator thicknesses were found to be an advantage due to the low signal self-absorption. The optical absorption coefficients, refractive indices, and the mirror optical reflectance of materials involved in the light transport to the photomultiplier tube photocathode were investigated. The computer-optimized design SCIUNI application was used to configure the optimized light guide system. It was shown that nonoptimized edge-guided systems possess very poor light guiding efficiency as low as 1%, while even very complex optimized ones can achieve more than 20%.
Faculty of Mathematics and Physics Charles University Prague Czech Republic
Institute of Scientific Instruments of the CAS Brno Czech Republic
Zobrazit více v PubMed
Autrata, R., Schauer, P., Kvapil, J., & Kvapil, J. (1978). A single crystal of YAG-new fast scintillator in SEM. Journal of Physics E: Scientific Instruments, 11(7), 707.
Autrata, R., Schauer, P., Kvapil, J., & Kvapil, J. (1983). A single crystal of YAlO3:Ce3+ as a fast scintillator in SEM. Scanning, 5(2), 91-96.
Babin, V., Chernenko, K., Kučera, M., Nikl, M., & Zazubovich, S. (2016). Photostimulated luminescence and defects creation processes in Ce 3+−doped epitaxial films of multicomponent Lu 3− x GdxGayAl 5− y O 12 garnets. Journal of Luminescence, 179, 487-495.
Bok, J., Lalinský, O., Hanuš, M., Onderišinová, Z., Kelar, J., & Kučera, M. (2016). GAGG: ce single crystalline films: New perspective scintillators for electron detection in SEM. Ultramicroscopy, 163, 1-5.
Bok, J., & Schauer, P. (2014a). Apparatus for temperature-dependent cathodoluminescence characterization of materials. Measurement Science and Technology, 25(7), 075601.
Bok, J., & Schauer, P. (2014b). Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function. Scanning, 36(4), 384-393.
Bolek, P., Zeler, J., Gorbenko, V., Zorenko, T., Popielarski, P., Bartosiewicz, K., … Zorenko, Y. (2020). Luminescent properties of nanopowder and single-crystalline films of TbAG:Ce garnet. Physica Status Solidi B-Basic Solid State Physics.257(8):1900495.
Bril, A., Blasse, G., & Poorter, J. A. D. (1970). Fast-decay phosphors. Journal of the Electrochemical Society, 117(3), 346-348.
Buryi, M., Laguta, V., Nikl, M., Gorbenko, V., Zorenko, T., & Zorenko, Y. (2019). LPE growth and study of the Ce3+ incorporation in LuAlO3:Ce single crystalline film scintillators. Crystengcomm, 21(21), 3313-3321.
Carrier, C., & Lecomte, R. (1990a). Effect of geometrical modifications and crystal defects on light collection in ideal rectangular parallelepipedic BGO scintillators. Nuclear Instruments and Methods in Physics Research Section A, 294(1-2), 355-364.
Carrier, C., & Lecomte, R. (1990b). Theoretical modeling of light transport in rectangular parallelepipedic scintillators. Nuclear Instruments & Methods in Physics Research Section A, 292(3), 685-692.
Chapman, J. N., Craven, A. J., & Scott, C. P. (1989). Electron detection in the analytical electron-microscope. Ultramicroscopy, 28(1-4), 108-117.
Chewpraditkul, W., Pattanaboonmee, N., Sakthong, O., Chewpraditkul, W., Yoshino, M., Horiai, T., … Kurosawa, S. (2020). Luminescence and scintillation properties of Mg2+-codoped Lu0. 6Gd2.4Al2Ga3O12:Ce single crystal. IEEE Transactions on Nuclear Science, 67(6), 904-909.
Chewpraditkul, W., Swiderski, L., Moszynski, M., Szczesniak, T., Syntfeld-Kazuch, A., Wanarak, C., & Limsuwan, P. (2009). Scintillation properties of LuAG:Ce, YAG:Ce and LYSO:Ce crystals for gamma-ray detection. IEEE Transactions on Nuclear Science, 56(6), 3800-3805.
Danilatos, G. D. (2012). Backscattered electron detection in environmental SEM. Journal of Microscopy, 245(2), 171-185.
Dujardin, C., Auffray, E., Bourret-Courchesne, E., Dorenbos, P., Lecoq, P., Nikl, M., … Zhu, R. Y. (2018). Needs, trends, and advances in inorganic scintillators. IEEE Transactions on Nuclear Science, 65(8), 1977-1997.
Everhart, T. E., & Thornley, R. F. M. (2004). Wide-band detector for micro-microampere low-energy electron currents. Advances in Imaging and Electron Physics, 133, 147-152.
Filippov, M. N., Rau, E. I., Sennov, R. A., Boyde, A., & Howell, P. G. T. H. (2001). Light collection efficiency and light transport in backscattered electron scintillator detectors in scanning electron microscopy. Scanning, 23(5), 305-312.
Frank, L. (2002). Advances in scanning electron microscopy. Advances in Imaging and Electron Physics, 123, 327-373.
Gorbenko, V., Zorenko, T., Paprocki, K., Iskatiyeva, A., Fedorov, A., Schroppel, F., … Zorenko, Y. (2017). Epitaxial growth of single crystalline film phosphors based on the Ce3+-doped Ca2YMgScSi3O12 garnet. Crystengcomm, 19(26), 3689-3697.
Gorbenko, V., Zorenko, T., Witkiewicz, S., Paprocki, K., Sidletskiy, O., Fedorov, A., … Zorenko, Y. (2017). LPE growth of single crystalline film scintillators based on Ce3+ doped Tb3-xGdxAl5-yGayO12 mixed garnets. Crystals, 7(9), 262.
Hamamatsu. (2016). Photomultiplier tubes and related products. Japan: Hamamatsu Photonics K.K.
Hatzakis, M. (1970). A new method of forming scintillators for electron collectors. Review of Scientific Instruments, 41(1), 128-128.
Healy, O. E., & Mott, R. B. (2016). Real-world electron detector performance in scanning electron microscopes. Microscopy and Microanalysis, 22(S3), 596-597.
Hejna, J. (1987). A ring scintillation detector for detection of backscattered electrons in the scanning electron-microscope. Scanning Microscopy, 1(3), 983-987.
Hibino, M., Irie, K., Autrata, R., & Schauer, P. (1992). Characteristics of YAG single-crystals for electron scintillators of stem. Journal of Electron Microscopy, 41(6), 453-457.
Joy, D. C. (1995). Monte Carlo modeling for electron microscopy and microanalysis. New York: Oxford University Press.
Joy, D. C., Joy, C. S., & Bunn, R. D. (1996). Measuring the performance of scanning electron microscope detectors. Scanning, 18(8), 533-538.
Knittel, Z. (1976). Optics of thin films (An optical multilayer theory). New York, NY): John Wiley & Sons.
Kucera, M., Onderisinova, Z., Bok, J., Hanus, M., Schauer, P., & Nikl, M. (2016). Scintillation response of Ce 3+ doped GdGa-LuAG multicomponent garnet films under e-beam excitation. Journal of Luminescence, 169, 674-677.
Kucera, M., & Prusa, P. (2017). LPE-grown thin-film scintillators. In M. Nikl (Ed.), Nanocomposite, ceramic and thin film scintillators (pp. 155-226). Singapore: Pan Stanford Publishing.
Kuwano, Y. (1978). Refractive-indexes of Yaio3-Nd. Journal of Applied Physics, 49(7), 4223-4224.
Kuwano, Y., Saito, S., & Hase, U. (1988). Crystal-growth and optical-properties of Nd-Ggag. Journal of Crystal Growth, 92(1-2), 17-22.
Lecoq, P., Gektin, A., & Korzhik, M. (2017). Addressing the increased demand for fast timing. In Inorganic scintillators for detector systems physical principles and crystal engineering (2nd ed., pp. 103-123). Switzerland: Springer International Publishing.
Lerche, C. W., Ros, A., Herrero, V., Esteve, R., Monzo, J. M., Sebastia, A., … Benlloch, J. M. (2008). Dependency of energy-, position- and depth of interaction resolution on scintillation crystal coating and geometry. IEEE Transactions on Nuclear Science, 55(3), 1344-1351.
Mihokova, E., Nikl, M., Mares, J. A., Beitlerova, A., Vedda, A., Nejezchleb, K., … D'Ambrosio, C. (2007). Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. Journal of Luminescence, 126(1), 77-80.
Mullerova, I., & Konvalina, I. (2009). Collection of secondary electrons in scanning electron microscopes. Journal of Microscopy, 236(3), 203-210.
Nedela, V., Tihlarikova, E., Runstuk, J., & Hudec, J. (2018). High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy, 184, 1-11.
Nikl, M., Kamada, K., Babin, V., Pejchal, J., Pilarova, K., Mihokova, E., … Yoshikawa, A. (2014). Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Crystal Growth & Design, 14(9), 4827-4833.
Nikl, M., Vedda, A., Fasoli, M., Fontana, I., Laguta, V., Mihokova, E., … Nejezchleb, K. (2007). Shallow traps and radiative recombination processes in Lu 3 Al 5 O 12:Ce single crystal scintillator. Physical Review B, 76(19), 195121.
Nikl, M., & Yoshikawa, A. (2015). Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials, 3(4), 463-481.
Nikl, M., Yoshikawa, A., Kamada, K., Nejezchleb, K., Stanek, C., Mares, J., & Blazek, K. (2013). Development of LuAG-based scintillator crystals-A review. Progress in Crystal Growth and Characterization of Materials, 59(2), 47-72.
Ohlídal, I., & Navrátil, K. (1984). Spectroscopic methods for optical analysis of thin films. Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis: Physica, 25(37), 5-83.
Pawley, J. (1974). Performance of SEM scintillation materials. Scanning Electron Microscopy, 7(5), 27-34.
Prusa, P., Kucera, M., Mares, J. A., Onderisinova, Z., Hanus, M., Babin, V., … Nikl, M. (2015). Composition tailoring in Ce-doped multicomponent garnet epitaxial film scintillators. Crystal Growth & Design, 15(8), 3715-3723.
Reimer, L. (1993). Detector systems. In Image formation in low-voltage scanning electron microscopy (pp. 29-40). Bellingham, Washington: SPIE Press.
Reimer, L. (1998). Electron detectors and spectrometers. In P. W. Hawkes (Ed.), Scanning electron microscopy: Physics of image formation and microanalysis. Berlin Heidelberg New York: Springer-Verlag.
Reimer, L. (2013). Scanning electron microscopy: Physics of image formation and microanalysis. Springer Series in Optical Sciences, Heidelberg, Germany: Springer-Verlag.
Robbins, D. J., Cockayne, B., Lent, B., Duckworth, C. N., & Glasper, J. L. (1979). Investigation of competitive recombination processes in rare-earth activated garnet phosphors. Physical Review B, 19(2), 1254-1269.
Salomoni, M., Pots, R., Auffray, E., & Lecoq, P. (2018). Enhancing light extraction of inorganic scintillators using photonic crystals. Crystals, 8(2), 78.
Schauer, P. (2007). Extended algorithm for simulation of light transport in single crystal scintillation detectors for S(T)EM. Scanning, 29(6), 249-253.
Schauer, P. (2011). Optimization of decay kinetics of YAG:Ce single crystal scintillators for S (T) EM electron detectors. Nuclear Instruments and Methods in Physics Research Section B, 269(21), 2572-2577.
Schauer, P., & Autrata, R. (1979). Electro-optical properties of a scintillation detector in SEM. Journal de Microscopie et de Spectroscopie Electroniques, 4(6), 633-650.
Schauer, P., & Autrata, R. (1992). Light transport in single-crystal scintillation detectors in SEM. Scanning, 14(6), 325-333.
Schauer, P., & Bok, J. (2013). Study of spatial resolution of YAG:Ce cathodoluminescent imaging screens. Nuclear Instruments and Methods in Physics Research Section B, 308, 68-73.
Schauer, P., Lalinsky, O., & Kucera, M. (2019). Prospective scintillation electron detectors for S(T)EM based on garnet film scintillators. Microscopy Research and Technique, 82(3), 272-282.
Schauer, P., Lalinsky, O., Kucera, M., Lucenicova, Z., & Hanus, M. (2017). Effect of Mg co-doping on cathodoluminescence properties of LuGAGG:Ce single crystalline garnet films. Optical Materials, 72, 359-366.
Skoupy, R., Fort, T., & Krzyzanek, V. (2020). Nanoscale estimation of coating thickness on substrates via standardless BSE detector calibration. Nanomaterials, 10(2), 332.
Tamulaitis, G., Vaitkevicius, A., Nargelas, S., Augulis, R., Gulbinas, V., Bohacek, P., … Auffray, E. (2017). Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nuclear Instruments & Methods in Physics Research Section A, 870, 25-29.
Tikhonravov, A. V., Trubetskov, M. K., Hrdina, J., & Sobota, J. (1996). Characterization of quasi-rugate filters using ellipsometric measurements. Thin Solid Films, 277(1-2), 83-89.
Witkiewicz-Lukaszek, S., Gorbenko, V., Zorenko, T., Paprocki, K., Sidletskiy, O., Fedorov, A., … Zorenko, Y. (2018). Epitaxial growth of composite scintillators based on Tb3Al5O12:Ce single crystalline films and Gd3Al2.5Ga2.5O12:Ce crystal substrates. Crystengcomm, 20(28), 3994-4002.
Witkiewicz-Lukaszek, S., Mrozik, A., Gorbenko, V., Zorenko, T., Bilski, P., Fedorov, A., & Zorenko, Y. (2020). LPE growth of composite thermoluminescent detectors based on the Lu3-xGdxAl5O12:Ce single crystalline films and YAG:Ce crystals. Crystals, 10(3), 189.
Xiaoguang, Y. (1984). A study of light collection efficiency in scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A, 228(1), 101-104.
Yamamoto, K., Tanji, T., Hibino, M., Schauer, P., & Autrata, R. (2000). Improvement of light collection efficiency of lens-coupled YAG screen TV system for a high-voltage electron microscope. Microscopy Research and Technique, 49(6), 596-604.
Zorenko, Y., Gorbenko, V., Savchyn, V., Voznyak, T., Sidletskiy, O., Grinyov, B., … Douissard, P. A. (2012). Single crystalline film scintillators based on the orthosilicate, perovskite and garnet compounds. IEEE Transactions on Nuclear Science, 59(5), 2260-2268.
Zorenko, Y., Gorbenko, V., Zorenko, T., Sidletskiy, O., Fedorov, A., Bilski, P., & Twardak, A. (2015). High-performance Ce-doped multicomponent garnet single crystalline film scintillators. Physica Status Solidi (RRL)-Rapid Research Letters, 9(8), 489-493.
Zorenko, Y., Mares, J. A., Prusa, P., Nikl, M., Gorbenko, V., Savchyn, V., … Nejezchleb, K. (2010). Luminescence and scintillation characteristics of YAG:Ce single crystalline films and single crystals. Radiation Measurements, 45(3-6), 389-391.
Zorenko, Y. V., Gorbenko, V. I., Stryganyuk, G. B., Kolobanov, V. N., Spasskii, D. A., Blazek, K., & Nikl, M. (2005). Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films. Optics and Spectroscopy, 99(6), 923-931.
Zych, E., Brecher, C., & Glodo, J. (2000). Kinetics of cerium emission in a YAG:Ce single crystal: The role of traps. Journal of Physics-Condensed Matter, 12(8), 1947-1958.
Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds