Three-Layered Composite Scintillator Based on the Epitaxial Structures of YAG and LuAG Garnets Doped with Ce3+ and Sc3+ Impurities

. 2024 Aug 13 ; 17 (16) : . [epub] 20240813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39203203

Grantová podpora
OPUS 24 LAP No 2022/47/I/ST8/02600 National Science Center

In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce3+ and Sc3+ ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B2O3 fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a 239Pu source, β-particles from 90Sr sources and γ-rays from a 137Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and β-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01).

Zobrazit více v PubMed

Phoswich Detectors for High Energy Backgrounds (Saint Gobiein) Feb 19, 2020. [(accessed on 1 August 2024)]. Available online: http://www.detectors.saint-gobain.com.

Coulon R., Kondrasovs V., Lecomte Q., Dumazert J. Multilayer phoswich scintillators for neutron/gamma discrimination. Radiat. Meas. 2018;117:57–62. doi: 10.1016/j.radmeas.2018.07.011. DOI

Zorenko Y.V., Novosad S.S., Pashkovskii M.V., Lyskovich A.B., Savitskii V.G., Batenchuk M.M., Malyutenkov P.S., Patsagan N.I., Nazar I.V., Gorbenko V.I. Epitaxial structures of garnets as scintillation detectors of ionizing radiation. J. Appl. Spectrosc. 1990;52:645–649. doi: 10.1007/BF00662203. DOI

Zorenko Y., Gorbenko V., Voznyak T., Konstankevych I., Savchyn V., Batentschuk M., Winnacker A., Brabec C.J. Scintillators Based on CdWO4 and CdWO4Bi Single Crystalline Films. IEEE Trans. Nucl. Sci. 2012;59:2281–2285. doi: 10.1109/TNS.2012.2201171. DOI

Kurosawa S., Yoshikawa A., Gorbenko V., Zorenko T., Witkiewicz-Lukaszek S., Fedorov A., Zorenko Y. Composite Scintillators Based on the Films and Crystals of (Lu,Gd,La)2Si2O7 Pyrosilicates. IEEE Trans. Nucl. Sci. 2020;67:994–998. doi: 10.1109/TNS.2020.2983657. DOI

Witkiewicz-Lukaszek S., Gorbenko V., Zorenko T., Syrotych Y., Mares J.A., Nikl M., Sidletskiy O., Bilski P., Yoshikawa A., Zorenko Y. Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds. Materials. 2022;15:1249. doi: 10.3390/ma15031249. PubMed DOI PMC

Sidletskiy O., Gorbenko V., Zorenko T., Syrotych Y., Witkiwicz-Łukaszek S., Mares J.A., Kucerkova R., Nikl M., Gerasymov I., Kurtsev D., et al. Composition Engineering of (Lu,Gd,Tb)3(Al,Ga)5O12:Ce Film/Gd3(Al,Ga)5O12:Ce Substrate Scintillators. Crystals. 2022;12:1366. doi: 10.3390/cryst12101366. DOI

Martin T., Douissard P.-A., Couchaud M., Cecilia A., Baumbach T., Dupre K., Rack A. LSO-Based Single Crystal Film Scintillator for Synchrotron-Based Hard X-ray Micro-Imaging. IEEE Trans. Nucl. Sci. 2009;56:1412–1418. doi: 10.1109/TNS.2009.2015878. DOI

Riva F., Douissard P.-A., Martin T., Carlà F., Zorenko Y., Dujardin C. Epitaxial growth of gadolinium and lutetium-based aluminum perovskite thin films for X-ray micro-imaging applications. CrystEngComm. 2016;18:608–615. doi: 10.1039/C5CE01938A. DOI

Koch A., Raven C., Spanne P., Snigirev A. X-ray imaging with submicrometer resolution employing transparent luminescent screens. J. Opt. Soc. Am. A. 1998;15:1940–1951. doi: 10.1364/JOSAA.15.001940. DOI

Martin T., Koch A. Recent developments in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006;13:180–194. doi: 10.1107/S0909049506000550. PubMed DOI

Kotaki A., Yoshino M., Yokota Y., Hanada T., Yamaji A., Toyoda S., Sato H., Ohashi Y., Kurosawa S., Kamada K., et al. Crystal growth and scintillation properties of tube shape-controlled Ce-doped Y3Al5O12 single crystals grown by micro-pulling-down method. Appl. Phys. Express. 2020;13:125503. doi: 10.35848/1882-0786/abc8ab. DOI

[(accessed on 1 August 2024)]. Available online: https://www.epic-crystal.com/scintillation-crystals/luagce-crystal.html.

[(accessed on 1 August 2024)]. Available online: https://www.wallson.net/products/luag-ce-scintillation-crystals.html.

Kamada K., Yanagida T., Pejchal J., Nikl M., Endo T., Tsutsumi K., Fujimoto Y., Fukabori A., Yoshikawa A. Crystal Growth and Scintillation Properties of Ce Doped Gd3(Ga,Al)5O12 Single Crystals. IEEE Trans. Nucl. Sci. 2012;59:2112–2115. doi: 10.1109/TNS.2012.2197024. DOI

Iwanowska J., Swiderski L., Szczesniak T., Sibczynski P., Moszynski M., Grodzicka M., Kamada K., Tsutsumi K., Usuki Y., Yanagida T., et al. Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2013;712:34–40. doi: 10.1016/j.nima.2013.01.064. DOI

Zhu Y., Qian S., Wang Z., Guo H., Ma L., Wang Z., Wu Q. Scintillation properties of GAGG:Ce ceramic and single crystal. Opt. Mater. 2020;105:109964. doi: 10.1016/j.optmat.2020.109964. DOI

Ryskin N.N., Dorenbos P., van Eijk C.W.E., Batygov S.K. Scintillation properties of Lu3Al5-xScxO12crystals. J. Phys. Condens. Matter. 1994;6:10423–10434. doi: 10.1088/0953-8984/6/47/025. DOI

Ogiegło J., Zych A., Jüstel T., Meijerink A., Ronda C. Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Pr3+ Opt. Mater. 2013;35:322–331. doi: 10.1016/j.optmat.2012.08.010. PubMed DOI

Ogiegło J.M., Zych A., Ivanovskikh K.V., Jüstel T., Ronda C.R., Meijerink A. Luminescence and Energy Transfer in Lu3Al5O12 Scintillators Co-Doped with Ce3+ and Tb3+ J. Phys. Chem. A. 2012;116:8464–8474. doi: 10.1021/jp301337f. PubMed DOI

Moszyński M., Ludziejewski T., Wolski D., Klamra W., Norlin L. Properties of the YAG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1994;345:461–467. doi: 10.1016/0168-9002(94)90500-2. DOI

Chewpraditkul W., Swiderski L., Moszynski M., Szczesniak T., Syntfeld-Kazuch A., Wanarak C., Limsuwan P. Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection. IEEE Trans. Nucl. Sci. 2009;56:3800–3805. doi: 10.1109/TNS.2009.2033994. DOI

[(accessed on 1 August 2024)]. Available online: https://www.samaterials.com/scintillation-crystals/2642-yag-ce-scintillation-crystal.html.

Xia Z., Meijerink A. Ce3+-Doped garnet phosphors: Composition modification, luminescence properties and applications. Chem. Soc. Rev. 2017;46:275–299. doi: 10.1039/C6CS00551A. PubMed DOI

Ueda J., Tanabe S. Review of luminescent properties of Ce3+-doped garnet phosphors: New insight into the effect of crystal and electronic structure. Opt. Mater. X. 2019;1:100018. doi: 10.1016/j.omx.2019.100018. DOI

Zazubovicz S., Krasnikov A., Zorenko Y., Gorbenko V., Babi V., Michokova E., Nikl M. Chapter 6—Luminescence of Pb- and Bi-Related Centers in Aluminum Garnet, Perovskite, and Orthosilicate Single-Crystalline Films. In: Nikl M., editor. Nanocomposite, Ceramic, and Thin Film Scintillators. Pan Stanford Publ.; Singapore: 2017.

Zorenko Y., Gorbenko V., Voznyak T., Zorenko T. Luminescence of Pb2+ ions in YAG:Pb single-crystalline films. Phys. Status Solidi (b) 2008;245:1618–1622. doi: 10.1002/pssb.200844093. DOI

Lupei V., Lupei A., Tiseanu C., Georgescu S., Stoicescu C., Nanau P.M. High-resolution optical spectroscopy of YAG:Nd: A test for structural and distribution models. Phys. Rev. B. 1995;51:8–17. doi: 10.1103/PhysRevB.51.8. PubMed DOI

Vrubel I.I., Polozkov R.G., Shelykh I.A., Khanin V.M., Rodnyi P.A., Ronda C.R. Bandgap Engineering in Yttrium–Aluminum Garnet with Ga Doping. Cryst. Growth Des. 2017;17:1863–1869. doi: 10.1021/acs.cgd.6b01822. DOI

Schauer P., Lalinský O., Kučera M., Lučeničová Z., Hanuš M. Effect of Mg co-doping on cathodoluminescence properties of LuGAGG:Ce single crystalline garnet films. Opt. Mater. 2017;72:359–366. doi: 10.1016/j.optmat.2017.06.028. DOI

Drozdowski W., Brylew K., Witkowski M., Drewniak A., Masewicz Z., Wojtowicz A., Kisielewski J., Świrkowicz M. Effect of Lu-to-Y ratio and Mo coactivation on scintillation properties of LuYAG:Pr and LuAG:Pr,Mo crystals. Opt. Mater. 2016;59:107–114. doi: 10.1016/j.optmat.2016.01.020. DOI

Brylew K., Drozdowski W., Witkowski M., Kamada K., Yanagida T., Yoshikawa A. Effect of thermal annealing in air on scintillation properties of LuAG and LuAG:Pr. Open Phys. 2013;11:138–142. doi: 10.2478/s11534-012-0153-5. DOI

Kuklja M.M. Defects in yttrium aluminium perovskite and garnet crystals: Atomistic study. J. Phys. Condens. Matter. 2000;12:2953–2967. doi: 10.1088/0953-8984/12/13/307. DOI

Nikl M., Mihokova E., Pejchal J., Vedda A., Zorenko Y., Nejezchleb K. The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Phys. Status Solidi (b) 2005;242:R119–R121. doi: 10.1002/pssb.200541225. DOI

Zorenko Y., Voloshinovskii A., Savchyn V., Voznyak T., Nikl M., Nejezchleb K., Mikhailin V., Kolobanov V., Spassky D. Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Phys. Status Solidi (b) 2007;244:2180–2189. doi: 10.1002/pssb.200642431. DOI

Gruber J.B., Hills M.E., Morrison C.A., Turner G.A., Kokta M.R. Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12. Phys. Rev. B. 1988;37:8564–8574. doi: 10.1103/PhysRevB.37.8564. PubMed DOI

Nakauchi D., Yoshida Y., Kawaguchi N., Yanagida T. Characterization of Ce-doped RE3Al5O12 (RE=Tb, Dy, Ho, Er, Tm and Yb) single crystalline scintillators. J. Mater. Sci. Mater. Electron. 2019;30:14085–14090. doi: 10.1007/s10854-019-01774-3. DOI

Zorenko Y., Gorbenko V., Zorenko T., Sidletskiy O., Fedorov A., Bilski P., Twardak A. High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2015;9:489–493. doi: 10.1002/pssr.201510225. DOI

Schauer P., Lalinský O., Kučera M. Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits. Microsc. Res. Tech. 2021;84:753–770. doi: 10.1002/jemt.23634. PubMed DOI

Crytur Integrated Crystal Based Solutions. [(accessed on 16 June 2024)]. Available online: www.crytur.cz.

Matsumoto S., Ito A. High-throughput production of LuAG-based highly luminescent thick film scintillators for radiation detection and imaging. Sci. Rep. 2022;12:19319. doi: 10.1038/s41598-022-23839-w. PubMed DOI PMC

Morishita Y., Yamamoto S., Izaki K., Kaneko J.H., Toui K., Tsubota Y., Higuchi M. Performance comparison of scintillators for alpha particle detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2014;764:383–386. doi: 10.1016/j.nima.2014.07.046. DOI

Drozdowski W., Wojtowicz A.J., Łukasiewicz T., Kisielewski J. Scintillation properties of LuAP and LuYAP crystals activated with Cerium and Molybdenum. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006;562:254–261. doi: 10.1016/j.nima.2006.01.127. DOI

Roy S., Topping S., Sarin V. Growth and Characterization of Lu2O3:Eu3+ Thin Films on Single-Crystal Yttria-Doped Zirconia. JOM. 2013;65:557–561. doi: 10.1007/s11837-013-0552-0. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...