Statistical Analysis of Machining Parameters on Burr Formation, Surface Roughness and Energy Consumption during Milling of Aluminium Alloy Al 6061-T6
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36431550
PubMed Central
PMC9696416
DOI
10.3390/ma15228065
PII: ma15228065
Knihovny.cz E-zdroje
- Klíčová slova
- aluminum alloy Al 6061-T6, milling, statistical analysis, sustainable machining,
- Publikační typ
- časopisecké články MeSH
Due to the increasing demand for higher production rates in the manufacturing sector, there is a need to manufacture finished or near-finished parts. Burrs and surface roughness are the two most important indicators of the surface quality of any machined parts. In addition to this, there is a constant need to reduce energy consumption during the machining operation in order to reduce the carbon footprint. Milling is one of the most extensively used cutting processes in the manufacturing industry. This research was conducted to investigate the effect of machining parameters on surface roughness, burr width, and specific energy consumption. In the present research, the machining parameters were varied using the Taguchi L9 array design of experiments, and their influence on the response parameters, including specific cutting energy, surface finish, and burr width, was ascertained. The response trends of burr width, energy consumption, and surface roughness with respect to the input parameters were analyzed using the main effect plots. Analysis of variance indicated that the cutting speed has contribution ratios of 55% and 47.98% of the specific cutting energy and burr width on the down-milling side, respectively. On the other hand, the number of inserts was found to be the influential member, with contribution ratios of 68.74% and 35% of the surface roughness and burr width on the up-milling side. The validation of the current design of the experiments was carried out using confirmatory tests in the best and worst conditions of the output parameters.
Zobrazit více v PubMed
Groover M.P. Fundamental of Modern Manufacturing Material, Processes, and System. 5th ed. John Wiley & Son, Inc.; Hoboken, NJ, USA: 2012.
Shaw M.C. Metal Cutting Principles. 2nd ed. Oxford University Press; Oxford, UK: 2001.
Kumar K., Zindani D., Davim J.P. Introduction to Machining Processes. Springer; Berlin/Heidelberg, Germany: 2018. pp. 41–47. DOI
Zhou L., Li F., Zhao F., Li J., Sutherland J.W. Characterizing the effect of process variables on energy consumption in end milling. Int. J. Adv. Manuf. Technol. 2019;101:2837–2848. doi: 10.1007/s00170-018-3015-5. DOI
Armarego E.J.A., Brown R.H. The Machining of Metals. Prentice-Hall; Hoboken, NJ, USA: 1969.
Thakre A. Optimization of Milling Parameters for Minimizing Surface Roughness Using Taguchi’s Approach. Int. J. Emerg. Technol. Adv. Eng. 2013;3:1–5.
Niknam S.A., Songmene V. Statistical investigation on burrs thickness during milling of 6061-T6 aluminium alloy; Proceedings of the 1st International Conference on Virtual Machining Process Technology; Montréal, QC, Canada. 28 May–1 June 2012.
Niknam S.A., Songmene V. Simultaneous optimization of burrs size and surface finish when milling 6061-T6 aluminium alloy. Int. J. Precis. Eng. Manuf. 2013;14:1311–1320. doi: 10.1007/s12541-013-0178-8. DOI
Schueler G.M., Engmann J., Marx T., Haberland R., Aurich J.C. Burrs—Analysis, control and removal; Proceedings of the CIRP International Conference on Burrs; Kaiserslautern, Germany. 2–3 April 2010; DOI
Aurich J.C., Dornfeld D., Arrazola P.J., Franke V., Leitz L., Min S. Burrs—Analysis, control and removal. CIRP Ann. Manuf. Technol. 2009;58:519–542. doi: 10.1016/j.cirp.2009.09.004. DOI
Dornfeld D., Min S., Takeuchi Y. Recent Advances in Mechanical Micromachining. CIRP Ann. Manuf. Technol. 2006;55:745–768. doi: 10.1016/j.cirp.2006.10.006. DOI
Rehman G.U., Jaffery S.H.I., Khan M., Ali L., Khan A., Butt S.I. Analysis of Burr Formation in Low Speed Micro-milling of Titanium Alloy (Ti-6Al-4V) Mech. Sci. 2018;9:231–243. doi: 10.5194/ms-9-231-2018. DOI
Azuddin M., Abdullah W. A Study on Surface Roughness and Burr Formation of Al6061 with Different Spindle Speed and Federate for Small End Milling Cutter. Int. J. Integr. Eng. 2009;1:7–14.
Niknam S.A., Songmene V. Analysis of Friction and Burr Formation in Slot Milling. Procedia CIRP. 2014;17:755–759. doi: 10.1016/j.procir.2014.02.032. DOI
Yadav R., Chakladar N., Paul S. Micro-milling of Ti-6Al-4 V with controlled burr formation. Int. J. Mech. Sci. 2022;231:107582. doi: 10.1016/j.ijmecsci.2022.107582. DOI
Muhammad A., Gupta M.K., Mikołajczyk T., Pimenov D.Y., Giasin K. Effect of Tool Coating and Cutting Parameters on Surface Roughness and Burr Formation during Micromilling of Inconel 718. Metals. 2021;11:167. doi: 10.3390/met11010167. DOI
Niknam S.A., Songmene V. Factors governing burr formation during high-speed slot milling of wrought aluminum alloys. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013;227:1165–1179. doi: 10.1177/0954405413484725. DOI
Silva L.C., da Silva M.B. Investigation of burr formation and tool wear in micromilling operation of duplex stainless steel. Precis. Eng. 2019;60:178–188. doi: 10.1016/j.precisioneng.2019.08.006. DOI
Hajiahmadi S. Burr size investigation in micro milling of stainless steel 316L. Int. J. Light. Mater. Manuf. 2019;2:296–304. doi: 10.1016/j.ijlmm.2019.07.004. DOI
Serope Kalpakjian S.R.S. Manufacturing Engineering and Technology. 6th ed. Pearson; London, UK: 2010.
Arola D., Williams C.L. Estimating the fatigue stress concentration factor of machined surfaces. Int. J. Fatigue. 2002;24:923–930. doi: 10.1016/S0142-1123(02)00012-9. DOI
Chen L., Zhang X. Modification the surface quality and mechanical properties by laser polishing of Al/PLA part manufactured by fused deposition modeling. Appl. Surf. Sci. 2019;492:765–775. doi: 10.1016/j.apsusc.2019.06.252. DOI
Mikell P. Groover Fundamentals of Modern Manufacturing Materials, Processes, and Systems. 4th ed. Wiley; Hoboken, NJ, USA: 2016. pp. 1–1028.
Sharma A., Dwivedi V. Effect of milling parameters on surface roughness: An experimental investigation. Mater. Today Proc. 2019;25:868–871. doi: 10.1016/j.matpr.2019.11.256. DOI
Agrawal C., Wadhwa J., Pitroda A., Pruncu C.I., Sarikaya M., Khanna N. Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribol. Int. 2021;153:106597. doi: 10.1016/j.triboint.2020.106597. DOI
Liu N., Wang S., Zhang Y., Lu W. A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. Int. J. Mech. Sci. 2016;118:13–20. doi: 10.1016/j.ijmecsci.2016.09.002. DOI
Premnath A.A., Alwarsamy T., Abhinav T., Krishnakant C.A. Surface Roughness Prediction by Response Surface Methodology in Milling of Hybrid Aluminium Composites. Procedia Eng. 2012;38:745–752. doi: 10.1016/j.proeng.2012.06.094. DOI
Sanjeevi R., Nagaraja R., Krishnan B.R. Vision-based surface roughness accuracy prediction in the CNC milling process (Al6061) using ANN. Mater. Today Proc. 2020;37:245–247. doi: 10.1016/j.matpr.2020.05.122. DOI
Khan M.A., Jaffery S.H.I., Khan M., Younas M., Butt S.I., Ahmad R., Warsi S. Statistical analysis of energy consumption, tool wear and surface roughness in machining of Titanium alloy (Ti-6Al-4V) under dry, wet and cryogenic conditions. Mech. Sci. 2019;10:561–573. doi: 10.5194/ms-10-561-2019. DOI
Beddoes J., Bibby M. Principles of Metal Manufacturing Processes. Elsevier; Amsterdam, The Netherlands: 1999. Metal processing and manufacturing. DOI
Nguyen T.-T. Prediction and optimization of machining energy, surface roughness, and production rate in SKD61 milling. Measurement. 2019;136:525–544. doi: 10.1016/j.measurement.2019.01.009. DOI
Gilbert W.W. Machining Theory and Practice. American Society of Metals; Materials Park, OH, USA: 1950. Economics of machining; pp. 465–485.
Balogun V.A., Edem I.F., Gu H., Mativenga P.T. Energy centric selection of machining conditions for minimum cost. Energy. 2018;164:655–663. doi: 10.1016/j.energy.2018.09.020. DOI
Lee I.G., Zhang Q., Yoon S.W., Won D. A mixed integer linear programming support vector machine for cost-effective feature selection. Knowl.-Based Syst. 2020;203:106145. doi: 10.1016/j.knosys.2020.106145. DOI
Hu L., Peng C., Evans S., Peng T., Liu Y., Tang R., Tiwari A. Minimising the machining energy consumption of a machine tool by sequencing the features of a part. Energy. 2017;121:292–305. doi: 10.1016/j.energy.2017.01.039. DOI
Cai W., Liu F., Zhou X., Xie J. Fine energy consumption allowance of workpieces in the mechanical manufacturing industry. Energy. 2016;114:623–633. doi: 10.1016/j.energy.2016.08.028. DOI
Hu L., Liu Y., Lohse N., Tang R., Lv J., Peng C., Evans S. Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed. Energy. 2017;139:935–946. doi: 10.1016/j.energy.2017.08.032. DOI
Wang Q., Liu F., Li C. An integrated method for assessing the energy efficiency of machining workshop. J. Clean. Prod. 2013;52:122–133. doi: 10.1016/j.jclepro.2013.03.020. DOI
Gutowski T., Dahmus J., Thiriez A. Electrical energy requirements for manufacturing processes; Proceedings of the 13th CIRP International Conference on Life Cycle Engineering; Leuven, Belgium. 31 May–2 June 2006.
Draganescu F., Gheorghe M., Doicin C. Models of machine tool efficiency and specific consumed energy. J. Mater. Process. Technol. 2003;141:9–15. doi: 10.1016/S0924-0136(02)00930-5. DOI
Newman S., Nassehi A., Imani-Asrai R., Dhokia V. Energy efficient process planning for CNC machining. CIRP J. Manuf. Sci. Technol. 2012;5:127–136. doi: 10.1016/j.cirpj.2012.03.007. DOI
Li J.-G., Lu Y., Zhao H., Li P., Yao Y.-X. Optimization of cutting parameters for energy saving. Int. J. Adv. Manuf. Technol. 2014;70:117–124. doi: 10.1007/s00170-013-5227-z. DOI
Zhang X., Yu T., Dai Y., Qu S., Zhao J. Energy consumption considering tool wear and optimization of cutting parameters in micro milling process. Int. J. Mech. Sci. 2020;178:105628. doi: 10.1016/j.ijmecsci.2020.105628. DOI
Wirtz A., Biermann D., Wiederkehr P. Design and optimization of energy-efficient milling processes using a geometric physically-based process simulation system. Procedia CIRP. 2020;88:270–275. doi: 10.1016/j.procir.2020.05.047. DOI
Li S., Liu F., Zhou X. Multi-objective energy-saving scheduling for a permutation flow line. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018;232:879–888. doi: 10.1177/0954405416657583. DOI
Warsi S.S., Jaffery S.H.I., Ahmad R., Khan M., Ali L., Agha M.H., Akram S. Development of energy consumption map for orthogonal machining of Al 6061-T6 alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018;232:2510–2522. doi: 10.1177/0954405417703424. DOI
Jang D.-Y., Jung J., Seok J. Modeling and parameter optimization for cutting energy reduction in MQL milling process. Int. J. Precis. Eng. Manuf. Technol. 2016;3:5–12. doi: 10.1007/s40684-016-0001-y. DOI
Ilesanmi D., Thlabadira I., Phokobye S., Mrausi S., Mpofu K., Masu L. Modelling and optimization of the cutting parameters for the milling operation of titanium alloy (Ti6Al4V); Proceedings of the 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT; Cape Town, South Africa. 20–22 January 2020; pp. 68–72. DOI
Zhou X., Liu F., Cai W. An energy-consumption model for establishing energy-consumption allowance of a workpiece in a machining system. J. Clean. Prod. 2016;135:1580–1590. doi: 10.1016/j.jclepro.2015.10.090. DOI
Thomas M., Beauchamp Y., Youssef A.Y., Masounave J. Effect of tool vibrations on surface roughness during lathe dry turning process. Comput. Ind. Eng. 1996;31:637–644. doi: 10.1016/S0360-8352(96)00235-5. DOI
Shahrom M.S., Yahya N.M., Yusoff A.R. Taguchi Method Approach on Effect of Lubrication Condition on Surface Roughness in Milling Operation. Procedia Eng. 2013;53:594–599. doi: 10.1016/j.proeng.2013.02.076. DOI
[(accessed on 27 August 2022)]. Available online: https://aluminium-guide.com/en/talat-lectures/
Ashkenazi D. How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technol. Forecast. Soc. Chang. 2019;143:101–113. doi: 10.1016/j.techfore.2019.03.011. DOI
Warren A.S. Developments and challenges for aluminum—A boeing perspective. Mater. Forum. 2004;28:24–31.
Warsi S.S., Jaffery H.I., Ahmad R., Khan M., Akram S. Analysis of power and specific cutting energy consumption in orthogonal machining of al 6061-t6 alloys at transitional cutting speeds; Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition; Houston, TX, USA. 13–19 November 2015; DOI
Peace G.S. Taguchi Methods A Hands on Approach Addison Wesley. Addison-Wesley; Boston, MA, USA: 1992.
Fearn T. Taguchi Methods. NIR News. 2001;12:8–9. doi: 10.1255/nirn.597. DOI
Jaffery S.I., Mativenga P. Study of the use of wear maps for assessing machining performance. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2009;223:1097–1105. doi: 10.1243/09544054JEM1462. DOI
Shi K., Zhang D., Liu N., Wang S., Ren J. A novel energy consumption model for milling process considering tool wear progression. J. Clean. Prod. 2018;184:152–159. doi: 10.1016/j.jclepro.2018.02.239. DOI
Liu Z., Guo Y., Sealy M. Energy consumption and process sustainability of hard milling with tool wear progression. J. Mater. Process. Technol. 2016;229:305–312. doi: 10.1016/j.jmatprotec.2015.09.032. DOI
Rioja R.J., Liu J. The Evolution of Al-Li Base Products for Aerospace and Space Applications. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2012;43:3325–3337. doi: 10.1007/s11661-012-1155-z. DOI
Merchant M.E. Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting. J. Appl. Phys. 1945;16:318–324. doi: 10.1063/1.1707596. DOI
Davim J.P., Astakhov V.P. Machining of Hard Metals. Springer; Cham, Switzerland: 2011.
Axinte D., Dewes R. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J. Mater. Process. Technol. 2002;127:325–335. doi: 10.1016/S0924-0136(02)00282-0. DOI
Sarỳkaya M., Dilipak H., Gezgin A. Optimization of the process parameters for surface roughness and tool life in face milling using the Taguchi analysis. Mater. Tehnol. 2015;49:139–147.
Bejaxhin A.B.H., Balamurugan G., Sivagami S., Ramkumar K., Vijayan V., Rajkumar S. Tribological Behavior and Analysis on Surface Roughness of CNC Milled Dual Heat Treated Al6061 Composites. Adv. Mater. Sci. Eng. 2021;2021:3844194. doi: 10.1155/2021/3844194. DOI
Jeyakumar S., Marimuthu K., Ramachandran T. Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM. J. Mech. Sci. Technol. 2013;27:2813–2822. doi: 10.1007/s12206-013-0729-z. DOI
Pham T.-H., Nguyen D.-T., Banh T.-L., Tong V.-C. Experimental study on the chip morphology, tool–chip contact length, workpiece vibration, and surface roughness during high-speed face milling of A6061 aluminum alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020;234:610–620. doi: 10.1177/0954405419863221. DOI
He Y., Wang L., Wang Y., Li Y., Wang S., Wang Y., Liu C., Hao C. An analytical model for predicting specific cutting energy in whirling milling process. J. Clean. Prod. 2019;240:118181. doi: 10.1016/j.jclepro.2019.118181. DOI
Korkut I., Donertas M. The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool–chip contact length during face milling. Mater. Des. 2007;28:308–312. doi: 10.1016/j.matdes.2005.06.002. DOI
Melorose J., Perroy R., Careas S. The Influence of Number of Inserts and Cutting Parameters on Surface Roughness in Face Milling. Statew. Agric. L. Use Baseline. 2015;1:1–7.
Daniyan I., Tlhabadira I., Mpofu K., Adeodu A. Investigating the geometrical effects of cutting tool on the surface roughness of titanium alloy (Ti6Al4V) during milling operation. Procedia CIRP. 2021;99:157–164. doi: 10.1016/j.procir.2021.03.097. DOI
Zaidi S.R., Khan M., Jaffery S.H.I., Warsi S.S. Effect of Machining Parameters on Surface Roughness During Milling Operation. Adv. Trans. Eng. 2021;15:175–180. doi: 10.3233/atde210033. DOI
Wang B., Liu Z., Song Q., Wan Y., Shi Z. Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. J. Clean. Prod. 2016;129:292–304. doi: 10.1016/j.jclepro.2016.04.071. DOI
Jaffery S.H.I., Khan M., Ali L., Mativenga P.T. Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016;230:1017–1034. doi: 10.1177/0954405414564409. DOI
Gusri A.I., Yanuar B., Yasir M.A. Burr Formation Analysis When Micro Milling Ti-6al-4v Eli Using End Mill Carbide Insert. PalArch’s J. Archaeol. Egypt. 2020;17:4061–4067.
Kumar M., Bajpai V. Experimental investigation of top burr formation in high-speed micro-milling of Ti6Al4V alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019;234:730–738. doi: 10.1177/0954405419883049. DOI
Tudela J., Martínez M., Valdivia R., Romo J., Portillo M., Rangel R. Enhanced Reader. Nature. 2010;388:539–547.
Mathai G.K., Melkote S.N., Rosen D.W. Effect of Process Parameters on Burrs Produced in Micromilling of a Thin Nitinol Foil. J. Micro Nano-Manuf. 2013;1:021005. doi: 10.1115/1.4024099. DOI
Kiswanto G., Zariatin D., Ko T. The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of Aluminum Alloy 1100 in micro-milling operation. J. Manuf. Process. 2014;16:435–450. doi: 10.1016/j.jmapro.2014.05.003. DOI