Sustainability assessment of machining Al 6061-T6 using Taguchi-grey relation integrated approach

. 2024 Jul 15 ; 10 (13) : e33726. [epub] 20240629

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39071558
Odkazy

PubMed 39071558
PubMed Central PMC11282944
DOI 10.1016/j.heliyon.2024.e33726
PII: S2405-8440(24)09757-3
Knihovny.cz E-zdroje

Modern machining requires reduction in energy usage, surface roughness, and burr width to produce finished or near-finished parts. To ensure high surface quality in machining processes, it is crucial to minimize surface finish and minimize burr width, which are considered as significant parameters as specific cutting energy. The objective of this study was to identify the optimal machining parameters for milling in order to minimize surface roughness, burr width, and specific cutting energy. To achieve this, the research investigated the impact of feed per tooth, cutting speed, depth of cut, and number of inserts on the responses across three intervals using Taguchi L9 array. Observing the responses by varying these parameters, underlined the need for multi objective optimisation. Machining conditions of 0.14 mm/tooth f z , 350 m/min V c and 2 mm ap using 1 cutting insert (exp no 9) was identified as the best machining run using grey relational analysis owing to its highest grey relational grade of 0.936. ANOVA examination identified cutting speed as the leading factor impacting the grey relational grade with 31.07 % contribution ratio, with the number of inserts, depth of cut, and feed per tooth also making notable contributions. Conclusively, machining parameters identified through response surface optimisation resulted in 21.69 % improvement in surface finish, 11.39 % reduction in specific energy consumption, and 6.2 % decrease in burr width on the down milling side albeit with an increase of 9 % in burr width on the up-milling side.

Zobrazit více v PubMed

Groover M.P. fifth ed. 2012. Fundamental of Modern Manufacturing Material, Processes, and System.

Shaw M.C. second ed. Oxford University Press; June: 2001. METAL CUTTING PRINCIPLES.

Guo Y., Wang L., Zhang Z., Cao J., Xia X., Liu Y. Integrated modeling for retired mechanical product genes in remanufacturing: a knowledge graph-based approach. Adv. Eng. Inf. Jan. 2024;59 doi: 10.1016/J.AEI.2023.102254. DOI

Khan M.A.M., et al. Multi-objective optimization of turning titanium-based alloy Ti-6Al-4V under dry, wet, and cryogenic conditions using gray relational analysis (GRA) Int. J. Adv. Manuf. Technol. 2020;106(9–10):3897–3911. doi: 10.1007/s00170-019-04913-6. DOI

Korkmaz M.E., Gupta M.K., Çelik E., Ross N.S., Günay M. A sustainable cooling/lubrication method focusing on energy consumption and other machining characteristics in high-speed turning of aluminum alloy. Sustain. Mater. Technol. Jul. 2024;40 doi: 10.1016/J.SUSMAT.2024.E00919. DOI

Kumar K., Zindani D., Davim J.P. 2018. Introduction to Machining Processes.

Trent E.M., Wright P.K. 2000. Metal Cutting Fourth Edition.

Wang Y., Toly T., Chen T. ScienceDirect an FNLP approach for planning energy-efficient manufacturing: wafer fabricationas an example. Procedia Manuf. 2019;38:439–446. doi: 10.1016/j.promfg.2020.01.056. 2020. DOI

Wang Z., Li L. Optimization of process parameters for surface roughness and tool wear in milling TC17 alloy using Taguchi with grey relational analysis. Adv. Mech. Eng. 2021;13(2):1–8. doi: 10.1177/1687814021996530. DOI

Khan M.A., et al. Statistical analysis of energy consumption, tool wear and surface roughness in machining of Titanium alloy (Ti-6Al-4V) under dry, wet and cryogenic conditions. Mech. Sci. 2019;10(2):561–573. doi: 10.5194/ms-10-561-2019. DOI

Zhu Z., Guo X., Ekevad M., Cao P., Na B., Zhu N. The effects of cutting parameters and tool geometry on cutting forces and tool wear in milling high-density fiberboard with ceramic cutting tools. Int. J. Adv. Manuf. Technol. 2017;91(9–12):4033–4041. doi: 10.1007/s00170-017-0085-8. DOI

Jaffery S.I., Driver N., Mativenga P.T. Analysis of process parameters in the micromachining of Ti-6Al-4V alloy. Proc. 36th Int. MATADOR Conf. 2010;2010-Janua:239–242. doi: 10.1007/978-1-84996-432-6_55. DOI

Gilbert, W W. Economics of machining. Mach. Pract. 1950:465–485.

Xie J., et al. Phase transformation mechanisms of NiTi shape memory alloy during electromagnetic pulse welding of Al/NiTi dissimilar joints. Mater. Sci. Eng. A. Feb. 2024;893 doi: 10.1016/J.MSEA.2024.146119. DOI

Xiao D., et al. Model for economic evaluation of closed-loop geothermal systems based on net present value. Appl. Therm. Eng. Aug. 2023;231 doi: 10.1016/J.APPLTHERMALENG.2023.121008. DOI

Hu L., et al. Minimising the machining energy consumption of a machine tool by sequencing the features of a part. Energy. 2017;121:292–305. doi: 10.1016/j.energy.2017.01.039. DOI

Cai W., Liu F., Zhou X.N., Xie J. Fine energy consumption allowance of workpieces in the mechanical manufacturing industry. Energy. 2016;114:623–633. doi: 10.1016/j.energy.2016.08.028. DOI

Hu L., et al. Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed. Energy. 2017;139:935–946. doi: 10.1016/j.energy.2017.08.032. DOI

Wang Q., Liu F., Li C. An integrated method for assessing the energy efficiency of machining workshop. J. Clean. Prod. 2013;52:122–133. doi: 10.1016/j.jclepro.2013.03.020. September 2009. DOI

Gutowski T., Dahmus J., Thiriez A. 2006. Electrical Energy Requirements for Manufacturing Processes. no. Cvd.

Draganescu F., Gheorghe M., V Doicin C. Vol. 141. 2003. pp. 9–15. (Models of Machine Tool Efficiency and Specific Consumed Energy). September 2002.

Newman S.T., Nassehi A., Dhokia V. CIRP journal of manufacturing science and technology energy efficient process planning for CNC machining. CIRP J. Manuf. Sci. Technol. 2012;5(2):127–136. doi: 10.1016/j.cirpj.2012.03.007. DOI

Zhou L., Li F., Zhao F., Li J., Sutherland J.W. Characterizing the effect of process variables on energy consumption in end milling. Int. J. Adv. Manuf. Technol. 2019;101(9–12):2837–2848. doi: 10.1007/s00170-018-3015-5. DOI

Li J.G., Lu Y., Zhao H., Li P., Yao Y.X. Optimization of cutting parameters for energy saving. Int. J. Adv. Manuf. Technol. 2014;70(1–4):117–124. doi: 10.1007/s00170-013-5227-z. DOI

Li J., Wang Z., Zhang S., Lin Y., Jiang L., Tan J. Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process. Robot. Comput. Integrated Manuf. Feb. 2024;85 doi: 10.1016/J.RCIM.2023.102647. DOI

Xiang Y., Wang Z., Zhang S., Jiang L., Lin Y., Tan J. Cross-sectional performance prediction of metal tubes bending with tangential variable boosting based on parameters-weight-adaptive CNN. Expert Syst. Appl. Mar. 2024;237 doi: 10.1016/J.ESWA.2023.121465. DOI

L. Zhu et al., “Effect of Cold Spray Parameters on Surface Roughness, Thickness and Adhesion of Copper Based Composite Coating on Aluminium Alloy 6061 T6 Substrate,” doi: 10.2139/SSRN.4369202.

Zhang X., Yu T., Wang W. Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out. Int. J. Mech. Sci. Feb. 2018;136:124–133. doi: 10.1016/j.ijmecsci.2017.12.019. DOI

Zhou Z., Chen D., Shengquan S., Xie . 2007. Springer Series in Advanced Manufacturing.

Wu C., Li B., Liu Y., Liang S.Y. Surface roughness modeling for grinding of Silicon Carbide ceramics considering co-existence of brittleness and ductility. Int. J. Mech. Sci. Nov. 2017;133:167–177. doi: 10.1016/j.ijmecsci.2017.07.061. DOI

Wang B., Liu Z., Song Q., Wan Y., Shi Z. Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. J. Clean. Prod. Aug. 2016;129:292–304. doi: 10.1016/j.jclepro.2016.04.071. DOI

Khan M.A., Jaffery S.H.I., Khan M. Assessment of sustainability of machining Ti-6Al-4V under cryogenic condition using energy map approach. Engineering Science and Technology, an International Journal. 2023;41

Sheheryar M., et al. Multi-objective optimization of process parameters during micro-milling of nickel-based alloy inconel 718 using taguchi-grey relation integrated approach. Materials. 2022;15(23) doi: 10.3390/ma15238296. PubMed DOI PMC

Khan M.A.M., Husain Imran Jaffery S., Khan M.A.M., Ahmad R., Butt S.I. Sustainability analysis of turning aerospace alloy Ti-6Al-4V under dry, wet and cryogenic conditions. Proc. 2020 IEEE 11th Int. Conf. Mech. Intell. Manuf. Technol. ICMIMT. 2020:27–30. doi: 10.1109/ICMIMT49010.2020.9041160. 2020. DOI

Ahmad A., et al. Achieving sustainable machining of titanium grade 3 alloy through optimization using grey relational analysis (GRA) Results Eng. 2024;23(May) doi: 10.1016/j.rineng.2024.102355. DOI

Serope Kalpakjian S.R.S. sixth ed. 2010. Manufacturing Engineering and Technology.

Kiliç M., Burdurlu E., Aslan S., Altun S., Tümerdem Ö. The effect of surface roughness on tensile strength of the medium density fiberboard (MDF) overlaid with polyvinyl chloride (PVC) Mater. Des. Dec. 2009;30(10):4580–4583. doi: 10.1016/j.matdes.2009.03.029. DOI

Javidi A., Rieger U., Eichlseder W. The effect of machining on the surface integrity and fatigue life. Int. J. Fatig. Oct. 2008;30(10–11):2050–2055. doi: 10.1016/j.ijfatigue.2008.01.005. DOI

Mikell P. Fourth Edition 2010.pdf; 2016. Groover Fundamentals of Modern Manufacturing Materials, Processes, and Systems; pp. 1–1028.

Khan M.A., et al. Experimental evaluation of surface roughness, burr formation, and tool wear during micro-milling of titanium grade 9 (Ti-3Al-2.5V) using statistical evaluation methods. Appl. Sci. 2023;13(23) doi: 10.3390/app132312875. DOI

Khan M.A., Jaffery S.H.I., Khan M.A., Faraz M.I., Mufti S. Multi-objective optimization of micro-milling titanium alloy Ti-3Al-2.5V (grade 9) using taguchi-grey relation integrated approach. Metals. 2023;13(8) doi: 10.3390/met13081373. DOI

Baig A., Jaffery S.H.I., Khan M.A., Alruqi M. Statistical analysis of surface roughness, burr formation and tool wear in high speed micro milling of inconel 600 alloy under cryogenic, wet and dry conditions. Micromachines. 2023;14(1) doi: 10.3390/mi14010013. PubMed DOI PMC

Beddoes J., Bibby M.J. Principles of Metal Manufacturing Processes. Elsevier; 1999. Metal processing and manufacturing; pp. 1–17.

Nguyen T.T. Prediction and optimization of machining energy, surface roughness, and production rate in SKD61 milling. Meas. J. Int. Meas. Confed. Mar. 2019;136(January):525–544. doi: 10.1016/j.measurement.2019.01.009. DOI

Wang M.Y., Chang H.Y. Experimental study of surface roughness in slot end milling AL2014-T6. Int. J. Mach. Tool Manufact. Jan. 2004;44(1):51–57. doi: 10.1016/j.ijmachtools.2003.08.011. DOI

Nathan D., Elilraja D., Prabhuram T., Prathap Singh S. Experimental investigation of surface roughness in end milling of AA6061 alloy with flooded cooling and minimum quantity lubrication (MQL) technique. Lect. Notes Mech. Eng. 2021:649–659. doi: 10.1007/978-981-15-4745-4_58. DOI

Muhammad A., Gupta M.K., Mikołajczyk T., Pimenov D.Y., Giasin K. Effect of tool coating and cutting parameters on surface roughness and burr formation during micromilling of inconel 718. Metals. Jan. 2021;11(1):1–18. doi: 10.3390/met11010167. DOI

Camposeco-Negrete C. Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. J. Clean. Prod. 2015;91:109–117. doi: 10.1016/j.jclepro.2014.12.017. DOI

Ali Khan M., Husain Imran Jaffery S., Khan M., Ikramullah Butt S. Wear and surface roughness analysis of machining of Ti-6Al-4V under dry, wet and cryogenic conditions. IOP Conf. Ser. Mater. Sci. Eng. 2019;689(1):2–7. doi: 10.1088/1757-899X/689/1/012006. DOI

Liu N., Wang S.B., Zhang Y.F., Lu W.F. A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. Int. J. Mech. Sci. Nov. 2016;118:13–20. doi: 10.1016/j.ijmecsci.2016.09.002. DOI

Sanjeevi R., Nagaraja R., Radha Krishnan B. “Vision-based surface roughness accuracy prediction in the CNC milling process (Al6061) using ANN,”. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.05.122. DOI

Ul Rehman G., Husain Imran Jaffery S., Khan M., Ali L., Khan A., Ikramullah Butt S. Analysis of burr formation in low speed micro-milling of titanium alloy (Ti-6Al-4V) Mech. Sci. Jul. 2018;9(2):231–243. doi: 10.5194/ms-9-231-2018. DOI

Saha S., Sravan Kumar A., Deb S., Bandyopadhyay P.P. An investigation on the top burr formation during Minimum Quantity Lubrication (MQL) assisted micromilling of copper. Mater. Today Proc. Jan. 2020;26:1809–1814. doi: 10.1016/J.MATPR.2020.02.379. DOI

Ko S.L., Lee J.K. Analysis of burr formation in drilling with a new-concept drill. J. Mater. Process. Technol. 2001;113(1–3):392–398. doi: 10.1016/S0924-0136(01)00717-8. DOI

Yuhua C., Yuqing M., Weiwei L., Peng H. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. Jun. 2017;91:197–202. doi: 10.1016/J.OPTLASTEC.2016.12.028. DOI

Liu Y., Liu Y., Wang T., Wang Z., Huang Q. Mathematical modeling and analysis of the tailor rolled blank manufacturing process. Int. J. Mech. Sci. Mar. 2024;266 doi: 10.1016/J.IJMECSCI.2024.108991. DOI

Kumar M., Bajpai V. “Experimental investigation of top burr formation in high-speed micro-milling of Ti6Al4V alloy:,”. 2019;234(4):730–738. doi: 10.1177/0954405419883049. Oct. DOI

Zhao W., Wang H., Chen W. Studying the effects of cutting parameters on burr formation and deformation of hierarchical micro-structures in ultra-precision raster milling. Int. J. Adv. Manuf. Technol. Apr. 2019;101(5–8):1133–1141. doi: 10.1007/s00170-018-3003-9. DOI

Niknam S.A., Songmene V. 2012. Statistical Investigation on Burrs Thickness during Milling of 6061-T6 Aluminium Alloy.

Schueler G.M., et al. Burrs - analysis, control and removal. Burrs - Anal. Control Remov. 2010 doi: 10.1007/978-3-642-00568-8. DOI

Takács M., Verö B., Mészáros I. Micromilling of metallic materials. J. Mater. Process. Technol. 2003;138(1–3):152–155. doi: 10.1016/S0924-0136(03)00064-5. DOI

Schmidt J., Tritschler H. Micro cutting of steel. Microsyst. Technol. 2004;10(3):167–174. doi: 10.1007/s00542-003-0346-3. DOI

Jaffery S.H.I., Khan M., Ali L., Mativenga P.T. Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016;230(6):1017–1034. doi: 10.1177/0954405414564409. DOI

Mathai G.K., Melkote S.N., Rosen D.W. Effect of process parameters on burrs produced in micromilling of a thin nitinol foil. J. Micro Nano-Manufacturing. 2013;1(2):1–10. doi: 10.1115/1.4024099. DOI

Swain N., Venkatesh V., Kumar P., Srinivas G., Ravishankar S., Barshilia H.C. An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills. CIRP J. Manuf. Sci. Technol. Jan. 2017;16:34–42. doi: 10.1016/J.CIRPJ.2016.07.005. DOI

Kuram E. Tool coating effect on the performance in milling of Al2124 aluminium alloy. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Derg. Sep. 2019;21(63):749–760. doi: 10.21205/DEUFMD.2019216307. DOI

Kumar P., Kumar M., Bajpai V., Singh N.K. Recent advances in characterization, modeling and control of burr formation in micro-milling. Manuf. Lett. Aug. 2017;13:1–5. doi: 10.1016/J.MFGLET.2017.04.002. DOI

Rauf A., Khan M.A., Jaffery S.H.I., Butt S.I. Effects of machining parameters, ultrasonic vibrations and cooling conditions on cutting forces and tool wear in meso scale ultrasonic vibrations assisted end-milling (UVAEM) of Ti-6Al-4V under dry, flooded, MQL and cryogenic environments–A statistical analysis. J. Mater. Res. Technol. 2024;30:8287–8303. doi: 10.1016/j.jmrt.2024.05.202. DOI

Chen X., Li C., Tang Y., Li L., Du Y., Li L. Integrated optimization of cutting tool and cutting parameters in face milling for minimizing energy footprint and production time. Energy. 2019;175:1021–1037. doi: 10.1016/j.energy.2019.02.157. DOI

Khan A.M., et al. Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling. Energies. 2019;12(4):710. doi: 10.3390/EN12040710. 710, Feb. 2019. DOI

Pimenov D.Y., Abbas A.T., Gupta M.K., Erdakov I.N., Soliman M.S., El Rayes M.M. Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel. Int. J. Adv. Manuf. Technol. 2020;107(7–8):3511–3525. doi: 10.1007/s00170-020-05236-7. DOI

Singh G.R., Gupta M.K., Mia M., Sharma V.S. Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques. Int. J. Adv. Manuf. Technol. 2018;97(1–4):481–494. doi: 10.1007/s00170-018-1911-3. DOI

Younas M., et al. Multi-objective optimization for sustainable turning Ti6Al4V alloy using grey relational analysis (GRA) based on analytic hierarchy process (AHP) Int. J. Adv. Manuf. Technol. 2019;105(1–4):1175–1188. doi: 10.1007/s00170-019-04299-5. DOI

Khan M.A., Imran Jaffery S.H., Khan M., Alruqi M. Machinability analysis of Ti-6Al-4V under cryogenic condition. J. Mater. Res. Technol. 2023;25:2204–2226. doi: 10.1016/j.jmrt.2023.06.022. DOI

Khan M.A., Jaffery S.H.I., Baqai A.A., Khan M. Comparative analysis of tool wear progression of dry and cryogenic turning of titanium alloy Ti-6Al-4V under low, moderate and high tool wear conditions. Int. J. Adv. Manuf. Technol. 2022;121(1–2):1269–1287. doi: 10.1007/s00170-022-09196-y. DOI

Jaffery S.I., Mativenga P.T. Study of the use of wear maps for assessing machining performance. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009;223(9):1097–1105. doi: 10.1243/09544054JEM1462. DOI

Shi K.N., Zhang D.H., Liu N., Wang S.B.L., Ren J.X., Wang S.B.L. A novel energy consumption model for milling process considering tool wear progression. J. Clean. Prod. May 2018;184:152–159. doi: 10.1016/j.jclepro.2018.02.239. DOI

Liu Z.Q.Y., Guo Y.B., Sealy M.P., Liu Z.Q.Y. Energy consumption and process sustainability of hard milling with tool wear progression. J. Mater. Process. Technol. 2016;229:305–312. doi: 10.1016/j.jmatprotec.2015.09.032. DOI

Budd J. The adsorption of aluminium from aqueous solution by cellulose fibres. Colloids and surfaces. 1989;41:363–384.

Ashkenazi D. How aluminum changed the world: a metallurgical revolution through technological and cultural perspectives. Technol. Forecast. Soc. Change. June 2018;143:101–113. doi: 10.1016/j.techfore.2019.03.011. Jun. 2019. DOI

Wang S., et al. The design of low-temperature solder alloys and the comparison of mechanical performance of solder joints on ENIG and ENEPIG interface. J. Mater. Res. Technol. Nov. 2023;27:5332–5339. doi: 10.1016/J.JMRT.2023.11.066. DOI

Warren A.S. Developments and challenges for aluminum - a boeing perspective. Mater. Forum. 2004;28:24–31.

Nouari M., Haddag B., Moufki A., Atlati S. Mach. Light Alloy; Aug. 2018. Investigation on the Built-Up Edge Process when Dry Machining Aeronautical Aluminum Alloys; pp. 35–48. DOI

Gómez-Parra A., Álvarez-Alcón M., Salguero J., Batista M., Marcos M. Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear. Apr. 2013;302(1–2):1209–1218. doi: 10.1016/J.WEAR.2012.12.001. DOI

Zhang X., Yu T., Dai Y., Qu S., Zhao J. Energy consumption considering tool wear and optimization of cutting parameters in micro milling process. Int. J. Mech. Sci. Jul. 2020;178(March) doi: 10.1016/j.ijmecsci.2020.105628. DOI

Warsi S.S., et al. Development of energy consumption map for orthogonal machining of Al 6061-T6 alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. Apr. 2018;232(14):2510–2522. doi: 10.1177/0954405417703424. DOI

Jin S.Y., Pramanik A., Basak A.K., Prakash C., Shankar S., Debnath S. Burr formation and its treatments—a review. Int. J. Adv. Manuf. Technol. 2020;107(5–6):2189–2210. doi: 10.1007/s00170-020-05203-2. DOI

Luo M., Liu G., Chen M. Mechanism of burr formation and control methods in slot milling Al-alloy. Shanghai Jiaotong Daxue Xuebao/Journal Shanghai Jiaotong Univ. 2007;41(12):1905–1909.

Hajiahmadi S. Burr size investigation in micro milling of stainless steel 316L. Int. J. Light. Mater. Manuf. Dec. 2019;2(4):296–304. doi: 10.1016/J.IJLMM.2019.07.004. DOI

Warsi S.S., Jaffery H.I., Ahmad R., Khan M., Akram S. 2016. Analysis of Power and Specific Cutting Energy Consumption in Orthogonal Machining of Al 6061-T6 Alloys at Transitional Cutting Speeds. V02BT02A057. DOI

Zaidi S.R., Ul Qadir N., Jaffery S.H.I., Khan M.A., Khan M., Petru J. Statistical analysis of machining parameters on burr formation, surface roughness and energy consumption during milling of aluminium alloy Al 6061-T6. Materials. 2022;15(22) doi: 10.3390/ma15228065. PubMed DOI PMC

Gutowski T., et al. Environmentally benign manufacturing: observations from Japan, europe and the United States. J. Clean. Prod. 2005;13(1):1–17. doi: 10.1016/j.jclepro.2003.10.004. DOI

Gusri A.I., Yanuar B., Yasir M.S.A. BURR FORMATION ANALYSIS WHEN MICRO MILLING Ti-6Al-4V ELI USING END MILL CARBIDE INSERT. PalArch’s J. Archaeol. Egypt. 2020;17(9):4061–4067.

M. Ap, “CoroMill ® 390 Shoulder Milling Body Tailor Made Offer (Metric),” no. Dc, pp. 2–7..

Genichi Taguchi Y.Y. Amer Supplier Inst; 1993. Taguchi Methods: Design of Experiments (TAGUCHI METHODS SERIES)

Bement T.R. Taguchi techniques for quality engineering. Technometrics. 1989;31(2):253–255. doi: 10.1080/00401706.1989.10488519. DOI

Ross P.J. Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design. Loss Fuction, Orthogonal Exp. Param. Toler. Des. 1995;5:1–73.

Zaidi S.R., Khan M., Jaffery S.H.I., Warsi S.S. Effect of machining parameters on surface roughness during milling operation. Advances in Transdisciplinary Engineering. 2021;0:175–180. doi: 10.3233/atde210033. DOI

Melorose J., Perroy R., Careas S. The influence of number of inserts and cutting parameters on surface roughness in face milling. Statew. Agric. L. Use Baseline. 2015;1(1):1–7. 2015.

Davim J.P., Astakhov V.P. 2011. Machining of Hard Metals.

Axinte D.A., Dewes R.C. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J. Mater. Process. Technol. Oct. 2002;127(3):325–335. doi: 10.1016/S0924-0136(02)00282-0. DOI

Sarỳkaya M., Dilipak H., Gezgin A. Optimization of the process parameters for surface roughness and tool life in face milling using the Taguchi analysis. Mater. Tehnol. 2015;49(1):139–147.

Jeyakumar S., Marimuthu K., Ramachandran T. Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM. J. Mech. Sci. Technol. 2013;27(9):2813–2822. doi: 10.1007/s12206-013-0729-z. DOI

Pham T.H., Nguyen D.T., Banh T.L., Tong V.C. Experimental study on the chip morphology, tool–chip contact length, workpiece vibration, and surface roughness during high-speed face milling of A6061 aluminum alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. Feb. 2020;234(3):610–620. doi: 10.1177/0954405419863221. DOI

Öztürk B., Uğur L., Yildiz A. Investigation of effect on energy consumption of surface roughness in X-axis and spindle servo motors in slot milling operation. Measurement. 2019;139:92–102. doi: 10.1016/j.measurement.2019.02.009. DOI

Zhang C., Li W., Jiang P., Gu P. Experimental investigation and multi-objective optimization approach for low-carbon milling operation of aluminum. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. Mar. 2017;231(15):2753–2772. doi: 10.1177/0954406216640574. DOI

Akram S., Jaffery S.H.I., Khan M., Fahad M., Mubashar A., Ali L. Numerical and experimental investigation of Johnson–Cook material models for aluminum (AL 6061-t6) alloy using orthogonal machining approach. Adv. Mech. Eng. 2018;10(9):1–14. doi: 10.1177/1687814018797794. DOI

Cao Y., Wang C., Ping Y., Hou P., Wu W. Proc. 2019 IEEE Int. Conf. Mechatronics Autom. ICMA; 2019. An experimental study on burrs in micro milling antenna micro narrow slots; pp. 1–5. Aug. 2019. DOI

Silva L.C., da Silva M.B. Investigation of burr formation and tool wear in micromilling operation of duplex stainless steel. Precis. Eng. Nov. 2019;60:178–188. doi: 10.1016/J.PRECISIONENG.2019.08.006. DOI

Tudela J., Martínez M., Valdivia R., Romo J., Portillo M., Rangel R. Vol. 388. Springer-Verlag London Ltd; 2012. Research on the Modeling of Burr Formation Process in Micro-ball End Milling Operation on Ti-6Al-4V,” Nature; pp. 539–547. DOI

Nas E., Demir H. January 2010, 2016. Technology the Influence of Number of Inserts and Cutting.

Daniyan I., Tlhabadira I., Mpofu K., Adeodu A. Investigating the geometrical effects of cutting tool on the surface roughness of titanium alloy (Ti6Al4V) during milling operation. Procedia CIRP. 2021;99:157–164. doi: 10.1016/j.procir.2021.03.097. DOI

Zhang T., Liu Z., Sun X., Xu J., Dong L., Zhu G. Investigation on specific milling energy and energy efficiency in high-speed milling based on energy flow theory. Energy. 2020;192 doi: 10.1016/j.energy.2019.116596. DOI

Kiswanto G., Zariatin D.L., Ko T.J. The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of Aluminum Alloy 1100 in micro-milling operation. J. Manuf. Process. Oct. 2014;16(4):435–450. doi: 10.1016/j.jmapro.2014.05.003. DOI

Aurich J.C., Dornfeld D., Arrazola P.J., Franke V., Leitz L., Min S. Burrs-Analysis, control and removal. CIRP Ann. - Manuf. Technol. 2009;58(2):519–542. doi: 10.1016/j.cirp.2009.09.004. DOI

Yan J., Li L. Multi-objective optimization of milling parameters-the trade-offs between energy, production rate and cutting quality. J. Clean. Prod. Aug. 2013;52:462–471. doi: 10.1016/j.jclepro.2013.02.030. DOI

C. R. Management, Grey Data Analysis. .

Kuo Y., Yang T., Huang G.W. The use of a grey-based Taguchi method for optimizing multi-response simulation problems. Eng. Optim. 2008;40(6):517–528. doi: 10.1080/03052150701857645. DOI

Khanafer K., Eltaggaz A., Deiab I., Agarwal H., Abdul-latif A. Toward sustainable micro-drilling of Inconel 718 superalloy using MQL-Nanofluid. Int. J. Adv. Manuf. Technol. Apr. 2020;107(7–8):3459–3469. doi: 10.1007/s00170-020-05112-4. DOI

Raju K.V.M.K., Janardhana G.R., Kumar P.N., Rao V.D.P. Optimization of cutting conditions for surface roughness in CNC end milling. Int. J. Precis. Eng. Manuf. 2011;12(3):383–391. doi: 10.1007/s12541-011-0050-7. DOI

Moradnazhad M., Unver H.O. Energy consumption characteristics of turn-mill machining. Int. J. Adv. Manuf. Technol. 2017;91(5–8):1991–2016. doi: 10.1007/s00170-016-9868-6. DOI

Zain A.M., Haron H., Sharif S. Prediction of surface roughness in the end milling machining using Artificial Neural Network. Expert Syst. Appl. 2010;37(2):1755–1768. doi: 10.1016/j.eswa.2009.07.033. DOI

Warsi S.S., Agha M.H., Ahmad R., Jaffery S.H.I., Khan M. Sustainable turning using multi-objective optimization: a study of Al 6061 T6 at high cutting speeds. Int. J. Adv. Manuf. Technol. Jan. 2019;100(1–4):843–855. doi: 10.1007/s00170-018-2759-2. DOI

Wojciechowski S., Maruda R.W., Krolczyk G.M., Niesłony P. Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis. Eng. Jan. 2018;51:582–596. doi: 10.1016/J.PRECISIONENG.2017.10.014. DOI

Sivam S.P.S.S., Saravanan K., Harshavardhana N., Kumaran D. Multi response optimization of setting input variables for getting better cylindrical cups in sheet metal spinning of Al 6061 - T6 by Grey relation analysis. Mater. Today Proc. 2021;45(2):1464–1470. doi: 10.1016/j.matpr.2020.07.453. DOI

Esme U., Bayramoglu M., Kazancoglu Y., Ozgun S. Optimization of weld bead geometry in TIG welding process using grey relation analysis and Taguchi method. Mater. Tehnol. 2009;43(3):143–149.

Roushan A., Bandyopadhyay A., Banerjee S. Multiple performance characteristics optimisation in side and face milling of glass fibre reinforced polyester composite at different weightage of performances by grey relational analysis. Int. J. Mach. Mach. Mater. 2017;19(1):41–56. doi: 10.1504/IJMMM.2017.081187. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...