Amaryllidaceae Alkaloids from Clivia miniata (Lindl.) Bosse (Amaryllidaceae): Isolation, Structural Elucidation, and Biological Activity

. 2022 Nov 10 ; 11 (22) : . [epub] 20221110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36432763

Grantová podpora
SVV 260 543; SVV 260 548 Charles University
CZ.02.1.01/0.0/0.0/18_069/0010046 Ministry of Education Youth and Sports
MPC-2021-01496 Aktion Austria-Czech Republic of OeAD

Clivia miniata (Amaryllidaceae) is an herbaceous evergreen flowering plant that is endemic to South Africa and Swaziland and belongs to one of the top-10 traded medicinal plants in informal medicine markets in South Africa. The species has been reported as the most important component of a traditional healer's pallet of healing plants. Eighteen known Amaryllidaceae alkaloids (AAs) of various structural types, and one undescribed alkaloid of homolycorine-type, named clivimine B (3), were isolated from Clivia miniata. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR techniques and by comparison with literature data. Compounds isolated in a sufficient quantity, and not tested previously, were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibition activities.

Zobrazit více v PubMed

Nair J.J., van Staden J. Antiprotozoal alkaloid principles of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2019;29:126642. doi: 10.1016/j.bmcl.2019.126642. PubMed DOI

Cahlíková L., Kawano I., Řezáčová M., Blunden G., Hulcová D., Havelek R. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochem. Rev. 2021;20:303–323. doi: 10.1007/s11101-020-09675-8. DOI

Nair J.J., Van Staden J. The Amaryllidaceae, a chemically and biologically privileged plant family. S. Afr. J. Bot. 2021;136:18. doi: 10.1016/j.sajb.2020.09.018. DOI

Al Shammari L., Hulcová D., Maříková J., Kučera T., Šafratová M., Nováková L., Schmidt M., Pulkrábková L., Janoušek J., Soukup O., et al. Amaryllidaceae alkaloids from Hippeastrum X Hybridum CV. Ferrari, and preparation of vittatine derivatives as potential ligands for Alzheimer’s disease. S. Afr. J. Bot. 2021;136:137–146. doi: 10.1016/j.sajb.2020.06.024. DOI

Konrath E.L., Passos C.D.S., Klein-Júnior L.C., Henriques A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2013;65:1701–1725. doi: 10.1111/jphp.12090. PubMed DOI

Crouch N.R., Mulholland D.A., Pohl T.L., Ndlovu E., van Wyk B.E. The ethnobotany and chemistry of the genus Clivia (Amaryllidaceae) S. Afr. J. Bot. 2003;69:144–147. doi: 10.1016/S0254-6299(15)30336-7. DOI

Musara C., Aladejana E.B., Aladejana A.E. Clivia miniata (Lindl.) Bosse, (Amaryllidaceae): Botany, medicinal uses, phytochemistry and pharmacological properties. J. Appl. Pharm. Sci. 2021;11:012–018. doi: 10.7324/JAPS.2021.110202. DOI

Omoruyi S.I., Delport J., Kangwa T.S., Ibrakaw A.S., Cupido C.N., Ekpo O.E., Hussein A.A. In vitro neuroprotective potential of Clivia miniata and Nerine humilis (Amaryllidaceae) in MPP+-induced neuronal toxicity in SH-SY5Y neuroblastoma cells. S. Afr. J. Bot. 2021;136:110–117. doi: 10.1016/j.sajb.2020.06.028. DOI

Rasethe M.T., Semenya S.S., Maroyi A. Medicinal plants traded in informal herbal medicine markets of the Limpopo Province, South Africa. Evid.-Based Complement. Altern. Med. 2019;2019:2609532. doi: 10.1155/2019/2609532. PubMed DOI PMC

Ali A.A., Ross S.A., El-Moghazy A.M., El-Moghazy S.A. Clivonidine, a new alkaloid from Clivia miniata. J. Nat. Prod. 1983;46:350–352. doi: 10.1021/np50027a009. DOI

Hirasawa Y., Tanaka T., Hirasawa S., Wong C.P., Uchiyama N., Kaneda T., Goda Y., Morita H. Cliniatines A–C, new Amaryllidaceae alkaloids from Clivia miniata, inhibiting Acetylcholinesterase. J. Nat. Med. 2022;76:171–177. doi: 10.1007/s11418-021-01570-6. PubMed DOI

Döpke W., Bienert M., Burlingame A.L., Schnoes H.K., Jeffs P.W., Farrier D.S. Structures and stereochemistry of clivonine and clivimine. Tetrahedron Lett. 1967;8:451–457. doi: 10.1016/S0040-4039(00)90968-7. DOI

Döpke W., Bienert M. Struktur und stereochemie des miniatins. Tetrahedron Lett. 1970;11:745–747. doi: 10.1016/S0040-4039(01)97819-0. DOI

Ieven M., Vlietinick A.J., Berghe D.V., Totte J., Dommisse R., Esmans E., Alderweireldt F. Plant antiviral agents. III. Isolation of alkaloids from Clivia miniata Regel (Amaryllidaceae) J. Nat. Prod. 1982;45:564–573. doi: 10.1021/np50023a009. PubMed DOI

Jiao S.S., Shen L.L., Zhu C., Bu X.L., Liu Y.H., Liu C.H., Yao X.Q., Zhang L.L., Zhou H.D., Walker D.G., et al. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl. Psychiatry. 2016;6:e907. doi: 10.1038/tp.2016.186. PubMed DOI PMC

Gao L., Zhang Y., Sterling K., Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022;11:4. doi: 10.1186/s40035-022-00279-0. PubMed DOI PMC

De Vita D., Pandolfi F., Ornano L., Feroci M., Chiarotto I., Sileno I., Pepi F., Costi R., Di Santo R., Scipione L. New N, N-dimethylcarbamate inhibitors of acetylcholinesterase: Design synthesis and biological evaluation. J. Enzyme Inhib. Med. Chem. 2016;31:106–113. doi: 10.1080/14756366.2016.1220377. PubMed DOI

Al Mamun A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae alkaloids of belladine-type from Narcissus pseudonarcissus cv. Carlton as new selective inhibitors of butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC

Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Novakova L., et al. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI

Vaněčková N., Hošt‘álková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpánková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114–80120. doi: 10.1039/C6RA20205E. DOI

Cho N., Du Y., Valenciano A.L., Fernández-Murga M.L., Goetz M., Clement J., Cassera M.B., Kingston D.G. Antiplasmodial alkaloids from bulbs of Amaryllis belladonna Steud. Bioorg. Med. Chem. Lett. 2018;28:40–42. doi: 10.1016/j.bmcl.2017.11.021. PubMed DOI PMC

Lamoral-Theys D., Andolfi A., Van Goietsenoven G., Cimmino A., Le Calvé B., Wauthoz N., Mégalizzi V., Gras T., Bruyère C., Dubois J., et al. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: An investigation of structure-activity relationship and mechanistic insight. J. Med. Chem. 2009;52:6244–6256. doi: 10.1021/jm901031h. PubMed DOI PMC

Roberts J.D., Crain W.O., Jr., Wildman W.C. Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of nicotine, quinine, and some Amaryllidaceae alkaloids. J. Am. Chem. Soc. 1971;93:990–994. doi: 10.1021/ja00733a035. PubMed DOI

Chen C.K., Lin F.H., Tseng L.H., Jiang C.L., Lee S.S. Comprehensive study of alkaloids from Crinum asiaticum var. sinicum assisted by HPLC-DAD-SPE-NMR. J. Nat. Prod. 2011;74:411–419. doi: 10.1021/np100819n. PubMed DOI

Chen J.Q., Xie J.H., Bao D.H., Liu S., Zhou Q.L. Total synthesis of (−)-galanthamine and (−)-lycoramine via catalytic asymmetric hydrogenation and intramolecular reductive Heck cyclization. Org. Lett. 2012;14:2714–2717. doi: 10.1021/ol300913g. PubMed DOI

Das M.K., Kumar N., Bisai A. Catalytic asymmetric total syntheses of naturally occurring Amarylidaceae alkaloids,(−)-crinine,(−)-epi-crinine,(−)-oxocrinine,(+)-epi-elwesine,(+)-vittatine, and (+)-epi-vittatine. Org. Lett. 2018;20:4421–4424. doi: 10.1021/acs.orglett.8b01703. PubMed DOI

Bastida J., Lavilla R., Viladomat F. Chapter 3 chemical and biological aspects of Narcissus. In: Cordell A.G., editor. Alkaloids. The Alkaloids: Chemistry and Biology. 1st ed. Volume 63. Elsevier; Amsterdam, The Netherlands: 2006. pp. 87–179. PubMed DOI PMC

Jeffs P.W., Abou-Donia A., Campau D., Staiger D. Structures of 9-O-demethylhomolycorine and 5α-hydroxyhomolycorine. alkaloids of Crinum defixum, C. scabrum, and C. latifolium. Assignment of aromatic substitution patterns from 1H-coupled 13C spectra. J. Org. Chem. 1985;50:1732–1737. doi: 10.1021/jo00210a031. DOI

Evidente A., Abou-Donia A.H., Darwish F.A., Amer M.E., Kassem F.F., Hammoda H.A., Motta A. Nobilisitine A and B, two masanane-type alkaloids from Clivia nobilis. Phytochemistry. 1999;51:1151–1155. doi: 10.1016/S0031-9422(98)00714-6. DOI

Lan P., Banwell M.G., Willis A.C. Application of electrocyclic ring-opening and desymmetrizing nucleophilic trappings of meso-6,6-dibromobicyclo [3.1.0] hexanes to total syntheses of crinine and haemanthamine alkaloids. J. Org. Chem. 2019;84:3431–3466. doi: 10.1021/acs.joc.9b00018. PubMed DOI

Evidente A., Iasiello I., Randazzo G. Isolation of sternbergine, a new alkaloid from bulbs of Sternbergia lutea. J. Nat. Prod. 1984;47:1003–1008. doi: 10.1021/np50036a017. DOI

Pabuççuoglu V., Richomme P., Gözler T., Kivçak B., Freyer A.J., Shamma M. Four new crinine-type alkaloids from Sternbergia species. J. Nat. Prod. 1989;52:785–791. doi: 10.1021/np50064a020. DOI

Wang C.D., Chen Q., Shin S., Cho C.G. Total Synthesis of (±)-Clivonine via Diels–Alder Reactions of 3,5-Dibromo-2-pyrone. J. Org. Chem. 2020;85:10035–10049. doi: 10.1021/acs.joc.0c01283. PubMed DOI

Yang S., Banwell M.G., Willis A.C., Ward J.S. A chemoenzymatic route to the (+)-form of the amaryllidaceae alkaloid narseronine. Aust. J. Chem. 2014;68:241–247. doi: 10.1071/CH14520. DOI

Schwartz B.D., Jones M.T., Banwell M.G., Cade I.A. Synthesis of the enantiomer of the structure assigned to the natural product nobilisitine A. Org. Lett. 2010;12:5210–5213. doi: 10.1021/ol102249q. PubMed DOI

Lodewyk M.W., Tantillo D.J. Prediction of the structure of nobilisitine A using computed NMR chemical shifts. J. Nat. Prod. 2011;74:1339–1343. doi: 10.1021/np2000446. PubMed DOI

Schwartz B.D., White L.V., Banwell M.G., Willis A.C. Structure of the lycorinine alkaloid nobilisitine A. J. Org. Chem. 2011;76:8560–8563. doi: 10.1021/jo2016899. PubMed DOI

Breiterová K., Koutová D., Maříková J., Havelek R., Kuneš J., Majorošová M., Opletal L., Hošťálková A., Jenčo J., Řezáčová M., et al. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. professor einstein and their cytotoxic activity. Plants. 2020;9:137. doi: 10.3390/plants9020137. PubMed DOI PMC

Cahlíková L., Hrabinová M., Kulhánková A., Benešová N., Chlebek J., Jun D., Novák Z., Macáková K., Kuneš J., Kuča K., et al. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Nat. Prod. Commun. 2013;8:1541–1545. doi: 10.1177/1934578X1300801110. PubMed DOI

Šafratová M., Hošťálková A., Hulcová D., Breiterová K., Hrabcová V., Machado M., Fontinha D., Prudêncio M., Kuneš J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharm. Res. 2018;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace