Amaryllidaceae Alkaloids from Clivia miniata (Lindl.) Bosse (Amaryllidaceae): Isolation, Structural Elucidation, and Biological Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 543; SVV 260 548
Charles University
CZ.02.1.01/0.0/0.0/18_069/0010046
Ministry of Education Youth and Sports
MPC-2021-01496
Aktion Austria-Czech Republic of OeAD
PubMed
36432763
PubMed Central
PMC9692855
DOI
10.3390/plants11223034
PII: plants11223034
Knihovny.cz E-zdroje
- Klíčová slova
- Amaryllidaceae, Clivia miniata, acetylcholinesterase, butyrylcholinesterase, clivimine B,
- Publikační typ
- časopisecké články MeSH
Clivia miniata (Amaryllidaceae) is an herbaceous evergreen flowering plant that is endemic to South Africa and Swaziland and belongs to one of the top-10 traded medicinal plants in informal medicine markets in South Africa. The species has been reported as the most important component of a traditional healer's pallet of healing plants. Eighteen known Amaryllidaceae alkaloids (AAs) of various structural types, and one undescribed alkaloid of homolycorine-type, named clivimine B (3), were isolated from Clivia miniata. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR techniques and by comparison with literature data. Compounds isolated in a sufficient quantity, and not tested previously, were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibition activities.
Zobrazit více v PubMed
Nair J.J., van Staden J. Antiprotozoal alkaloid principles of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2019;29:126642. doi: 10.1016/j.bmcl.2019.126642. PubMed DOI
Cahlíková L., Kawano I., Řezáčová M., Blunden G., Hulcová D., Havelek R. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochem. Rev. 2021;20:303–323. doi: 10.1007/s11101-020-09675-8. DOI
Nair J.J., Van Staden J. The Amaryllidaceae, a chemically and biologically privileged plant family. S. Afr. J. Bot. 2021;136:18. doi: 10.1016/j.sajb.2020.09.018. DOI
Al Shammari L., Hulcová D., Maříková J., Kučera T., Šafratová M., Nováková L., Schmidt M., Pulkrábková L., Janoušek J., Soukup O., et al. Amaryllidaceae alkaloids from Hippeastrum X Hybridum CV. Ferrari, and preparation of vittatine derivatives as potential ligands for Alzheimer’s disease. S. Afr. J. Bot. 2021;136:137–146. doi: 10.1016/j.sajb.2020.06.024. DOI
Konrath E.L., Passos C.D.S., Klein-Júnior L.C., Henriques A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2013;65:1701–1725. doi: 10.1111/jphp.12090. PubMed DOI
Crouch N.R., Mulholland D.A., Pohl T.L., Ndlovu E., van Wyk B.E. The ethnobotany and chemistry of the genus Clivia (Amaryllidaceae) S. Afr. J. Bot. 2003;69:144–147. doi: 10.1016/S0254-6299(15)30336-7. DOI
Musara C., Aladejana E.B., Aladejana A.E. Clivia miniata (Lindl.) Bosse, (Amaryllidaceae): Botany, medicinal uses, phytochemistry and pharmacological properties. J. Appl. Pharm. Sci. 2021;11:012–018. doi: 10.7324/JAPS.2021.110202. DOI
Omoruyi S.I., Delport J., Kangwa T.S., Ibrakaw A.S., Cupido C.N., Ekpo O.E., Hussein A.A. In vitro neuroprotective potential of Clivia miniata and Nerine humilis (Amaryllidaceae) in MPP+-induced neuronal toxicity in SH-SY5Y neuroblastoma cells. S. Afr. J. Bot. 2021;136:110–117. doi: 10.1016/j.sajb.2020.06.028. DOI
Rasethe M.T., Semenya S.S., Maroyi A. Medicinal plants traded in informal herbal medicine markets of the Limpopo Province, South Africa. Evid.-Based Complement. Altern. Med. 2019;2019:2609532. doi: 10.1155/2019/2609532. PubMed DOI PMC
Ali A.A., Ross S.A., El-Moghazy A.M., El-Moghazy S.A. Clivonidine, a new alkaloid from Clivia miniata. J. Nat. Prod. 1983;46:350–352. doi: 10.1021/np50027a009. DOI
Hirasawa Y., Tanaka T., Hirasawa S., Wong C.P., Uchiyama N., Kaneda T., Goda Y., Morita H. Cliniatines A–C, new Amaryllidaceae alkaloids from Clivia miniata, inhibiting Acetylcholinesterase. J. Nat. Med. 2022;76:171–177. doi: 10.1007/s11418-021-01570-6. PubMed DOI
Döpke W., Bienert M., Burlingame A.L., Schnoes H.K., Jeffs P.W., Farrier D.S. Structures and stereochemistry of clivonine and clivimine. Tetrahedron Lett. 1967;8:451–457. doi: 10.1016/S0040-4039(00)90968-7. DOI
Döpke W., Bienert M. Struktur und stereochemie des miniatins. Tetrahedron Lett. 1970;11:745–747. doi: 10.1016/S0040-4039(01)97819-0. DOI
Ieven M., Vlietinick A.J., Berghe D.V., Totte J., Dommisse R., Esmans E., Alderweireldt F. Plant antiviral agents. III. Isolation of alkaloids from Clivia miniata Regel (Amaryllidaceae) J. Nat. Prod. 1982;45:564–573. doi: 10.1021/np50023a009. PubMed DOI
Jiao S.S., Shen L.L., Zhu C., Bu X.L., Liu Y.H., Liu C.H., Yao X.Q., Zhang L.L., Zhou H.D., Walker D.G., et al. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl. Psychiatry. 2016;6:e907. doi: 10.1038/tp.2016.186. PubMed DOI PMC
Gao L., Zhang Y., Sterling K., Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022;11:4. doi: 10.1186/s40035-022-00279-0. PubMed DOI PMC
De Vita D., Pandolfi F., Ornano L., Feroci M., Chiarotto I., Sileno I., Pepi F., Costi R., Di Santo R., Scipione L. New N, N-dimethylcarbamate inhibitors of acetylcholinesterase: Design synthesis and biological evaluation. J. Enzyme Inhib. Med. Chem. 2016;31:106–113. doi: 10.1080/14756366.2016.1220377. PubMed DOI
Al Mamun A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae alkaloids of belladine-type from Narcissus pseudonarcissus cv. Carlton as new selective inhibitors of butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC
Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Novakova L., et al. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI
Vaněčková N., Hošt‘álková A., Šafratová M., Kuneš J., Hulcová D., Hrabinová M., Doskočil I., Štěpánková Š., Opletal L., Nováková L., et al. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Adv. 2016;6:80114–80120. doi: 10.1039/C6RA20205E. DOI
Cho N., Du Y., Valenciano A.L., Fernández-Murga M.L., Goetz M., Clement J., Cassera M.B., Kingston D.G. Antiplasmodial alkaloids from bulbs of Amaryllis belladonna Steud. Bioorg. Med. Chem. Lett. 2018;28:40–42. doi: 10.1016/j.bmcl.2017.11.021. PubMed DOI PMC
Lamoral-Theys D., Andolfi A., Van Goietsenoven G., Cimmino A., Le Calvé B., Wauthoz N., Mégalizzi V., Gras T., Bruyère C., Dubois J., et al. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: An investigation of structure-activity relationship and mechanistic insight. J. Med. Chem. 2009;52:6244–6256. doi: 10.1021/jm901031h. PubMed DOI PMC
Roberts J.D., Crain W.O., Jr., Wildman W.C. Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of nicotine, quinine, and some Amaryllidaceae alkaloids. J. Am. Chem. Soc. 1971;93:990–994. doi: 10.1021/ja00733a035. PubMed DOI
Chen C.K., Lin F.H., Tseng L.H., Jiang C.L., Lee S.S. Comprehensive study of alkaloids from Crinum asiaticum var. sinicum assisted by HPLC-DAD-SPE-NMR. J. Nat. Prod. 2011;74:411–419. doi: 10.1021/np100819n. PubMed DOI
Chen J.Q., Xie J.H., Bao D.H., Liu S., Zhou Q.L. Total synthesis of (−)-galanthamine and (−)-lycoramine via catalytic asymmetric hydrogenation and intramolecular reductive Heck cyclization. Org. Lett. 2012;14:2714–2717. doi: 10.1021/ol300913g. PubMed DOI
Das M.K., Kumar N., Bisai A. Catalytic asymmetric total syntheses of naturally occurring Amarylidaceae alkaloids,(−)-crinine,(−)-epi-crinine,(−)-oxocrinine,(+)-epi-elwesine,(+)-vittatine, and (+)-epi-vittatine. Org. Lett. 2018;20:4421–4424. doi: 10.1021/acs.orglett.8b01703. PubMed DOI
Bastida J., Lavilla R., Viladomat F. Chapter 3 chemical and biological aspects of Narcissus. In: Cordell A.G., editor. Alkaloids. The Alkaloids: Chemistry and Biology. 1st ed. Volume 63. Elsevier; Amsterdam, The Netherlands: 2006. pp. 87–179. PubMed DOI PMC
Jeffs P.W., Abou-Donia A., Campau D., Staiger D. Structures of 9-O-demethylhomolycorine and 5α-hydroxyhomolycorine. alkaloids of Crinum defixum, C. scabrum, and C. latifolium. Assignment of aromatic substitution patterns from 1H-coupled 13C spectra. J. Org. Chem. 1985;50:1732–1737. doi: 10.1021/jo00210a031. DOI
Evidente A., Abou-Donia A.H., Darwish F.A., Amer M.E., Kassem F.F., Hammoda H.A., Motta A. Nobilisitine A and B, two masanane-type alkaloids from Clivia nobilis. Phytochemistry. 1999;51:1151–1155. doi: 10.1016/S0031-9422(98)00714-6. DOI
Lan P., Banwell M.G., Willis A.C. Application of electrocyclic ring-opening and desymmetrizing nucleophilic trappings of meso-6,6-dibromobicyclo [3.1.0] hexanes to total syntheses of crinine and haemanthamine alkaloids. J. Org. Chem. 2019;84:3431–3466. doi: 10.1021/acs.joc.9b00018. PubMed DOI
Evidente A., Iasiello I., Randazzo G. Isolation of sternbergine, a new alkaloid from bulbs of Sternbergia lutea. J. Nat. Prod. 1984;47:1003–1008. doi: 10.1021/np50036a017. DOI
Pabuççuoglu V., Richomme P., Gözler T., Kivçak B., Freyer A.J., Shamma M. Four new crinine-type alkaloids from Sternbergia species. J. Nat. Prod. 1989;52:785–791. doi: 10.1021/np50064a020. DOI
Wang C.D., Chen Q., Shin S., Cho C.G. Total Synthesis of (±)-Clivonine via Diels–Alder Reactions of 3,5-Dibromo-2-pyrone. J. Org. Chem. 2020;85:10035–10049. doi: 10.1021/acs.joc.0c01283. PubMed DOI
Yang S., Banwell M.G., Willis A.C., Ward J.S. A chemoenzymatic route to the (+)-form of the amaryllidaceae alkaloid narseronine. Aust. J. Chem. 2014;68:241–247. doi: 10.1071/CH14520. DOI
Schwartz B.D., Jones M.T., Banwell M.G., Cade I.A. Synthesis of the enantiomer of the structure assigned to the natural product nobilisitine A. Org. Lett. 2010;12:5210–5213. doi: 10.1021/ol102249q. PubMed DOI
Lodewyk M.W., Tantillo D.J. Prediction of the structure of nobilisitine A using computed NMR chemical shifts. J. Nat. Prod. 2011;74:1339–1343. doi: 10.1021/np2000446. PubMed DOI
Schwartz B.D., White L.V., Banwell M.G., Willis A.C. Structure of the lycorinine alkaloid nobilisitine A. J. Org. Chem. 2011;76:8560–8563. doi: 10.1021/jo2016899. PubMed DOI
Breiterová K., Koutová D., Maříková J., Havelek R., Kuneš J., Majorošová M., Opletal L., Hošťálková A., Jenčo J., Řezáčová M., et al. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. professor einstein and their cytotoxic activity. Plants. 2020;9:137. doi: 10.3390/plants9020137. PubMed DOI PMC
Cahlíková L., Hrabinová M., Kulhánková A., Benešová N., Chlebek J., Jun D., Novák Z., Macáková K., Kuneš J., Kuča K., et al. Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Nat. Prod. Commun. 2013;8:1541–1545. doi: 10.1177/1934578X1300801110. PubMed DOI
Šafratová M., Hošťálková A., Hulcová D., Breiterová K., Hrabcová V., Machado M., Fontinha D., Prudêncio M., Kuneš J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharm. Res. 2018;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI