Effect of Infill Density in FDM 3D Printing on Low-Cycle Stress of Bamboo-Filled PLA-Based Material
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2022:31140/1312/3105
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague grants no. 2022:31140/1312/3105: "Research on composite materials with polymer matrix and natural filler in the field of additive technology.
CZ.02.1.01/0.0/0.0/18_069/0010045
OP VVV Project Development of new nano and micro coatings on the surface of selected metallic materials-NANOTECH ITI II., Reg. No CZ.02.1.01/0.0/0.0/18_069/0010045.
PubMed
36433057
PubMed Central
PMC9693264
DOI
10.3390/polym14224930
PII: polym14224930
Knihovny.cz E-resources
- Keywords
- 3D printing, PLA polymer, SEM, bamboo, infill density, low-cycle test, mechanical properties,
- Publication type
- Journal Article MeSH
In this paper, the fatigue behavior of polylactic acid (PLA) material with bamboo filler printed by 3D additive printing using fused deposition modelling (FDM) technology at different infill densities and print nozzle diameters is investigated. The mechanical test results are supported by the findings from SEM image analysis. The fatigue behavior was tested at four consecutive 250 cycles at loads ranging from 5 to 20, 30, 40, and 50% based on the limits found in the static tensile test. The results of the static tensile and low-cycle fatigue tests confirmed significant effects of infill density of 60%, 80%, and 100% on the tensile strength of the tested specimens. In particular, the research results show a significant effect of infill density on the fatigue properties of the tested materials. The influence of cyclic tests resulted in the strengthening of the tested material, and at the same time, its viscoelastic behavior was manifested. SEM analysis of the fracture surface confirmed a good interaction between the PLA matrix and the bamboo-based filler using nozzle diameters of 0.4 and 0.6 mm and infill densities of 60%, 80%, and 100%. Low-cycle testing showed no reductions in the mechanical properties and fatigue lives of the 3D printed samples.
See more in PubMed
Muller M., Sleger V., Kolar V., Hromasova M., Pis D., Mishra R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers. 2022;14:1301. doi: 10.3390/polym14071301. PubMed DOI PMC
Ayrilmis N., Buyuksari U., Dundar T. Waste Pine Cones as a Source of Reinforcing Fillers for Thermoplastic Composites. J. Appl. Polym. Sci. 2010;117:2324–2330. doi: 10.1002/app.32076. DOI
Ruggiero A., Valasek P., Mueller M. Exploitation of Waste Date Seeds Phoenix Dactylifera in Form of Polymeric Particle Biocomposite: Investigation on Adhesion, Cohesion. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI
Pakkanen J., Manfredi D., Minetola P., Iuliano L. About the use of recycled or biodegradable filaments for sustainability of 3D printing. In: Campana G., Howlett R.J., Setchi R., Cimatti B., editors. Sustainable Design and Manufacturing 2017. Springer International Publishing; Cham, Germany: 2017. pp. 776–785.
Antonio Travieso-Rodriguez J., Zandi M.D., Jerez-Mesa R., Lluma-Fuentes J. Fatigue Behavior of PLA-Wood Composite Manufactured by Fused Filament Fabrication. J. Mater. Res. Technol. 2020;9:8507–8516. doi: 10.1016/j.jmrt.2020.06.003. DOI
Svatik J., Lepcio P., Ondreas F., Zarybnicka K., Zboncak M., Mencik P., Jancar J. PLA Toughening via Bamboo-Inspired 3D Printed Structural Design. Polym. Test. 2021;104:107405. doi: 10.1016/j.polymertesting.2021.107405. DOI
Zhao D.X., Cai X., Shou G.Z., Gu Y.Q., Wang P.X. Study on the Preparation of Bamboo Plastic Composite Intend for Additive Manufacturing. Key Eng. Mater. 2016;667:250–258. doi: 10.4028/www.scientific.net/KEM.667.250. DOI
Correa D., Papadopoulou A., Guberan C., Jhaveri N., Reichert S., Menges A., Tibbits S. 3D-Printed Wood: Programming Hygroscopic Material Transformations. 3D Print. Addit. Manuf. 2015;2:106–116. doi: 10.1089/3dp.2015.0022. DOI
Ayrilmis N. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Polym. Test. 2018;71:163–166. doi: 10.1016/j.polymertesting.2018.09.009. DOI
Shahar F.S., Sultan M.T.H., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Shah A.U.M. Fatigue and Impact Properties of 3D Printed PLA Reinforced with Kenaf Particles. J. Mater. Res. Technol. 2022;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI
Yao T., Zhang K., Deng Z., Ye J. A Novel Generalized Stress Invariant-Based Strength Model for Inter-Layer Failure of FFF 3D Printing PLA Material. Mater. Des. 2020;193:108799. doi: 10.1016/j.matdes.2020.108799. DOI
Le Duigou A., Correa D., Ueda M., Matsuzaki R., Castro M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites. Mater. Des. 2020;194:108911. doi: 10.1016/j.matdes.2020.108911. DOI
Huber T., Müssig J. Fibre Matrix Adhesion of Natural Fibres Cotton, Flax and Hemp in Polymeric Matrices Analyzed with the Single Fibre Fragmentation Test. Compos. Interfaces. 2008;15:335–349. doi: 10.1163/156855408783810948. DOI
Arockiam A.J., Subramanian K., Padmanabhan R.G., Selvaraj R., Bagal D.K., Rajesh S. A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Mater. Today Proc. 2022;50:2057–2064. doi: 10.1016/j.matpr.2021.09.413. DOI
Calì M., Pascoletti G., Gaeta M., Milazzo G., Ambu R. New Filaments with Natural Fillers for FDM 3D Printing and Their Applications in Biomedical Field. Procedia Manuf. 2020;51:698–703. doi: 10.1016/j.promfg.2020.10.098. DOI
Li T., Aspler J., Kingsland A., Cormier L.M., Zou X. 3d Printing—A Review of Technologies, Markets, and Opportunities for the Forest Industry. J. Sci. Technol. For. Prod. Process. 2016;5:30.
Le Duigou A., Castro M., Bevan R., Martin N. 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality. Mater. Des. 2016;96:106–114. doi: 10.1016/j.matdes.2016.02.018. DOI
Azadi M., Dadashi A., Dezianian S., Kianifar M., Torkaman S., Chiyani M. High-Cycle Bending Fatigue Properties of Additive-Manufactured ABS and PLA Polymers Fabricated by Fused Deposition Modeling 3D-Printing. Forces Mech. 2021;3:100016. doi: 10.1016/j.finmec.2021.100016. DOI
Wang Z., Xu J., Lu Y., Hu L., Fan Y., Ma J., Zhou X. Preparation of 3D Printable Micro/Nanocellulose-Polylactic Acid (MNC/PLA) Composite Wire Rods with High MNC Constitution. Ind. Crop. Prod. 2017;109:889–896. doi: 10.1016/j.indcrop.2017.09.061. DOI
Yao T., Deng Z., Zhang K., Li S. A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations. Compos. Part B Eng. 2019;163:393–402. doi: 10.1016/j.compositesb.2019.01.025. DOI
Chacon J.M., Caminero M.A., Garcia-Plaza E., Nunez P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Mater. Des. 2017;124:143–157. doi: 10.1016/j.matdes.2017.03.065. DOI
Tanikella N.G., Wittbrodt B., Pearce J.M. Tensile Strength of Commercial Polymer Materials for Fused Filament Fabrication 3D Printing. Addit. Manuf. 2017;15:40–47. doi: 10.1016/j.addma.2017.03.005. DOI
Mishra R., Wiener J., Novotna J. Bio-Composites Reinforced with Natural Fibers: Comparative Analysis of Thermal, Static and Dynamic-Mechanical Properties. Fibers Polym. 2020;21:619–627. doi: 10.1007/s12221-020-9804-0. DOI
Tiwary V.K., Arunkumar P., Kulkarni P.M. Micro-Particle Grafted Eco-Friendly Polymer Filaments for 3D Printing Technology. Mater. Today Proc. 2020;28:1980–1984. doi: 10.1016/j.matpr.2020.05.573. DOI
Kariz M., Sernek M., Obućina M., Kuzman M.K. Effect of Wood Content in FDM Filament on Properties of 3D Printed Parts. Mater. Today Commun. 2018;14:135–140. doi: 10.1016/j.mtcomm.2017.12.016. DOI
Daver F., Lee K.P.M., Brandt M., Shanks R. Cork–PLA Composite Filaments for Fused Deposition Modelling. Compos. Sci. Technol. 2018;168:230–237. doi: 10.1016/j.compscitech.2018.10.008. DOI
Mishra R., Tiwari R., Marsalkova M., Behera B.K. Effect of TiO2 Nanoparticles on Basalt/Polysiloxane Composites: Mechanical and Thermal Characterization. J. Text. Inst. 2012;103:1361–1368. doi: 10.1080/00405000.2012.685270. DOI
Abdullah A.H., Alias S.K., Abdan K., Ali A. Advances in Manufacturing and Materials Engineering (ICAMME) Volume 576. Trans Tech Publications Ltd.; Wollerau, Switzerland: 2012. A study of fatigue life of kenaf fibre composites; pp. 757–760.
Senatov F.S., Niaza K.V., Stepashkin A.A., Kaloshkin S.D. Low-Cycle Fatigue Behavior of 3d-Printed PLA-Based Porous Scaffolds. Compos. Part B Eng. 2016;97:193–200. doi: 10.1016/j.compositesb.2016.04.067. DOI
Essassi K., Rebiere J.-L., El Mahi A., Ben Souf M.A., Bouguecha A., Haddar M. Experimental and Analytical Investigation of the Bending Behaviour of 3D-Printed Bio-Based Sandwich Structures Composites with Auxetic Core under Cyclic Fatigue Tests. Compos. Part A Appl. Sci. Manuf. 2020;131:105775. doi: 10.1016/j.compositesa.2020.105775. DOI
Gama N., Ferreira A., Barros-Timmons A. 3D Printed Cork/Polyurethane Composite Foams. Mater. Des. 2019;179:107905. doi: 10.1016/j.matdes.2019.107905. DOI
Tao G., Xia Z. A Non-Contact Real-Time Strain Measurement and Control System for Multiaxial Cyclic/Fatigue Tests of Polymer Materials by Digital Image Correlation Method. Polym. Test. 2005;24:844–855. doi: 10.1016/j.polymertesting.2005.06.013. DOI
Chen F., Xu Q., Huang F., Xie Z., Fang H. Effect of Nozzle Vibration at Different Frequencies on Surface Structures and Tensile Properties of PLA Parts Printed by FDM. Mater. Lett. 2022;325:132612. doi: 10.1016/j.matlet.2022.132612. DOI
Magalhães da Silva S.P., Antunes T., Costa M.E.V., Oliveira J.M. Cork-like Filaments for Additive Manufacturing. Addit. Manuf. 2020;34:101229. doi: 10.1016/j.addma.2020.101229. DOI
Jerez-Mesa R., Travieso-Rodriguez J.A., Llumà-Fuentes J., Gomez-Gras G., Puig D. Fatigue Lifespan Study of PLA Parts Obtained by Additive Manufacturing. Procedia Manuf. 2017;13:872–879. doi: 10.1016/j.promfg.2017.09.146. DOI