Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 EB018975
NIBIB NIH HHS - United States
PubMed
36437258
PubMed Central
PMC9701692
DOI
10.1038/s41467-022-34272-y
PII: 10.1038/s41467-022-34272-y
Knihovny.cz E-zdroje
- MeSH
- časná diagnóza MeSH
- hydrogely * MeSH
- lidé MeSH
- netěsnost anastomózy * diagnostické zobrazování MeSH
- senzitivita a specificita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogely * MeSH
Millions of patients every year undergo gastrointestinal surgery. While often lifesaving, sutured and stapled reconnections leak in around 10% of cases. Currently, surgeons rely on the monitoring of surrogate markers and clinical symptoms, which often lack sensitivity and specificity, hence only offering late-stage detection of fully developed leaks. Here, we present a holistic solution in the form of a modular, intelligent suture support sealant patch capable of containing and detecting leaks early. The pH and/or enzyme-responsive triggerable sensing elements can be read out by point-of-need ultrasound imaging. We demonstrate reliable detection of the breaching of sutures, in as little as 3 hours in intestinal leak scenarios and 15 minutes in gastric leak conditions. This technology paves the way for next-generation suture support materials that seal and offer disambiguation in cases of anastomotic leaks based on point-of-need monitoring, without reliance on complex electronics or bulky (bio)electronic implantables.
Biomedical Center Faculty of Medicine in Pilsen Charles University Prague Czech Republic
Department of Surgery Faculty of Medicine in Pilsen Charles University Prague Czech Republic
Howard Hughes Medical Institute Pasadena CA 91125 USA
Swiss HPB and Transplant Center Zurich Rämistrasse 100 CH 8091 Zurich Switzerland
Zobrazit více v PubMed
McGiffin, T. et al. Surgical management and long-term functional outcomes after anastomotic leak in patients undergoing minimally invasive restorative rectal resection and without a diverting ileostomy. ANZ J. Surg. n/a,. PubMed
Ryu JH, et al. Multipurpose intraperitoneal adhesive patches. Adv. Funct. Mater. 2019;29:1900495. doi: 10.1002/adfm.201900495. DOI
Sciuto A, et al. Predictive factors for anastomotic leakage after laparoscopic colorectal surgery. World J. Gastroenterol. 2018;24:2247–2260. doi: 10.3748/wjg.v24.i21.2247. PubMed DOI PMC
Nordentoft T, Pommergaard H-C, Rosenberg J, Achiam MP. Fibrin glue does not improve healing of gastrointestinal anastomoses: a systematic review. Eur. Surg. Res. 2015;54:1–13. doi: 10.1159/000366418. PubMed DOI
Choudhuri AH, Uppal R. Predictors of septic shock following anastomotic leak after major gastrointestinal surgery: An audit from a tertiary care institute. Indian J. Crit. Care Med. Peer-Rev. Publ. Indian Soc. Crit. Care Med. 2013;17:298–303. PubMed PMC
Hammond J, Lim S, Wan Y, Gao X, Patkar A. The burden of gastrointestinal anastomotic leaks: an evaluation of clinical and economic outcomes. J. Gastrointest. Surg. 2014;18:1176–1185. doi: 10.1007/s11605-014-2506-4. PubMed DOI PMC
Adamina M, et al. Monitoring c-reactive protein after laparoscopic colorectal surgery excludes infectious complications and allows for safe and early discharge. Surg. Endosc. 2014;28:2939–2948. doi: 10.1007/s00464-014-3556-0. PubMed DOI
Thomas MS, Margolin DA. Management of colorectal anastomotic leak. Clin. Colon Rectal Surg. 2016;29:138–144. doi: 10.1055/s-0036-1580630. PubMed DOI PMC
Ferko A, Rejholoc J, Škrovina M, Tachecí I, Sirák I. Colorectal anastomosis dehiscence: a call for more detailed morphological classification. Videosurgery Miniinvasive Tech. 2020;16:98–109. doi: 10.5114/wiitm.2020.97367. PubMed DOI PMC
Foppa C, Ng SC, Montorsi M, Spinelli A. Anastomotic leak in colorectal cancer patients: New insights and perspectives. Eur. J. Surg. Oncol. 2020;46:943–954. doi: 10.1016/j.ejso.2020.02.027. PubMed DOI
Zhang H-Y, et al. To drain or not to drain in colorectal anastomosis: a meta-analysis. Int. J. Colorectal Dis. 2016;31:951–960. doi: 10.1007/s00384-016-2509-6. PubMed DOI PMC
Gavriilidis P, Azoulay D, Taflampas P. Loop transverse colostomy versus loop ileostomy for defunctioning of colorectal anastomosis: a systematic review, updated conventional meta-analysis, and cumulative meta-analysis. Surg. Today. 2019;49:108–117. doi: 10.1007/s00595-018-1708-x. PubMed DOI
Annabi N, Yue K, Tamayol A, Khademhosseini A. Elastic sealants for surgical applications. Eur. J. Pharm. Biopharm. 2015;95:27–39. doi: 10.1016/j.ejpb.2015.05.022. PubMed DOI PMC
Histopathological changes associated to an absorbable fibrin patch (Tachosil®) covering in an experimental model of high-risk colonic anastomoses. Histol. Histopathol. 33, 299–306 (2017). PubMed
Anthis, A. H. C. et al. Chemically stable, strongly adhesive sealant patch for intestinal anastomotic leakage prevention. Adv. Funct. Mater. n/a, 2007099 (2021).
Li J, et al. Tough adhesives for diverse wet surfaces. Science. 2017;357:378–381. doi: 10.1126/science.aah6362. PubMed DOI PMC
Wu J, et al. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects. Sci. Transl. Med. 2022;14:eabh2857. doi: 10.1126/scitranslmed.abh2857. PubMed DOI
Gao Z, Duan L, Yang Y, Hu W, Gao G. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion. Appl. Surf. Sci. 2018;427:74–82. doi: 10.1016/j.apsusc.2017.08.157. DOI
Wu SJ, Yuk H, Wu J, Nabzdyk CS, Zhao X. A multifunctional origami patch for minimally invasive tissue sealing. Adv. Mater. 2021;33:2007667. doi: 10.1002/adma.202007667. PubMed DOI PMC
Kim K, Kim K, Ryu JH, Lee H. Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials. 2015;52:161–170. doi: 10.1016/j.biomaterials.2015.02.010. PubMed DOI
Ito T, Eriguchi M, Koyama Y. Bioabsorbable bioadhesive hydrogel comprising poly(acrylic acid) and poly(vinylpyrrolidone) for adhesion barrier and hemostatic device. MRS Commun. 2015;5:291–295. doi: 10.1557/mrc.2015.14. DOI
Nam, S. & Mooney, D. Polymeric tissue adhesives. Chem. Rev. 10.1021/acs.chemrev.0c00798 (2021). PubMed
Pinnaratip R, Bhuiyan MSA, Meyers K, Rajachar RM, Lee BP. Multifunctional biomedical adhesives. Adv. Healthc. Mater. 2019;8:1801568. doi: 10.1002/adhm.201801568. PubMed DOI PMC
Kalidasan V, et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 2021;5:1217–1227. doi: 10.1038/s41551-021-00802-0. PubMed DOI
Hellebrekers BWJ, Trimbos-Kemper GCM, van Blitterswijk CA, Bakkum EA, Trimbos JBMZ. Effects of five different barrier materials on postsurgical adhesion formation in the rat. Hum. Reprod. 2000;15:1358–1363. doi: 10.1093/humrep/15.6.1358. PubMed DOI
Singh B, Sharma K, Rajneesh, Dutt S. Dietary fiber tragacanth gum based hydrogels for use in drug delivery applications. Bioact. Carbohydr. Diet. Fibre. 2020;21:100208. doi: 10.1016/j.bcdf.2019.100208. DOI
Shapiro MG, et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 2014;9:311–316. doi: 10.1038/nnano.2014.32. PubMed DOI PMC
Sirelkhatim A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC
Yu J, et al. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv. Mater. 2021;33:2008395. doi: 10.1002/adma.202008395. PubMed DOI
Zhao X, et al. An injectable and antifouling self-fused supramolecular hydrogel for preventing postoperative and recurrent adhesions. Chem. Eng. J. 2021;404:127096. doi: 10.1016/j.cej.2020.127096. DOI
Xu Z, Liu W. Poly(N -acryloyl glycinamide): a fascinating polymer that exhibits a range of properties from UCST to high-strength hydrogels. Chem. Commun. 2018;54:10540–10553. doi: 10.1039/C8CC04614J. PubMed DOI
Pawar AA, et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci. Adv. 2016;2:e1501381. doi: 10.1126/sciadv.1501381. PubMed DOI PMC
Taking Photoinitiators Into the Water World. Sigma-Aldrichhttps://www.sigmaaldrich.com/technical-documents/articles/technology-spotlights/watersoluble-photoinitiators.html.
Guan, Y. et al. An enhanced drought-tolerant method using SA-loaded pamps polymer materials applied on tobacco pelleted seeds. Sci. World J. 2014, (2014). PubMed PMC
Zhang X, Xu B, Gao F, Zheng P, Liu W. Repair of volumetric bone defects with a high strength BMP-loaded-mineralized hydrogel tubular scaffold. J. Mater. Chem. B. 2017;5:5588–5596. doi: 10.1039/C7TB01279A. DOI
Kovačič S, Silverstein MS. Superabsorbent, high porosity, pamps-based hydrogels through emulsion templating. Macromol. Rapid Commun. 2016;37:1814–1819. doi: 10.1002/marc.201600249. PubMed DOI
Pasquet J, et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. Physicochem. Eng. Asp. 2014;457:263–274. doi: 10.1016/j.colsurfa.2014.05.057. DOI
Matter MT, et al. Engineering the bioactivity of flame-made ceria and ceria/bioglass hybrid nanoparticles. ACS Appl. Mater. Interfaces. 2019;11:2830–2839. doi: 10.1021/acsami.8b18778. PubMed DOI
Siddiqi KS, Ur Rahman A, Tajuddin, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018;13:141. doi: 10.1186/s11671-018-2532-3. PubMed DOI PMC
Nussinovitch A, Velez‐Silvestre R, Peleg M. Mechanical properties of hydrocolloid gels filled with internally produced CO2 gas bubbles. Biotechnol. Prog. 1992;8:424–428. doi: 10.1021/bp00017a009. PubMed DOI
Darnell MC, et al. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials. 2013;34:8042–8048. doi: 10.1016/j.biomaterials.2013.06.061. PubMed DOI PMC
Kvietys PR, Granger DN. Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann. N. Y. Acad. Sci. 2010;1207:E29–E43. doi: 10.1111/j.1749-6632.2010.05709.x. PubMed DOI PMC
Bar-Zion A, et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 2021;16:1403–1412. doi: 10.1038/s41565-021-00971-8. PubMed DOI
Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur. J. Pharm. Biopharm. 2018;129:222–246. doi: 10.1016/j.ejpb.2018.05.024. PubMed DOI
F04 Committee. Test Method for Strength Properties of Tissue Adhesives in T-Peel by Tension Loading. http://www.astm.org/cgi-bin/resolver.cgi?F2256-05R1510.1520/F2256-05R15.
F04 Committee. Test Method for Strength Properties of Tissue Adhesives in Lap-Shear by Tension Loading. http://www.astm.org/cgi-bin/resolver.cgi?F2255-05R1510.1520/F2255-05R15.
Bergholt MS, et al. Raman spectroscopy reveals new insights into the zonal organization of native and tissue-engineered articular cartilage. ACS Cent. Sci. 2016;2:885–895. doi: 10.1021/acscentsci.6b00222. PubMed DOI PMC
Matter MT, et al. Multiscale analysis of metal oxide nanoparticles in tissue: insights into biodistribution and biotransformation. Adv. Sci. 2020;7:2000912. doi: 10.1002/advs.202000912. PubMed DOI PMC