A critical thermal transition driving spring phenology of Northern Hemisphere conifers

. 2023 Mar ; 29 (6) : 1606-1617. [epub] 20221211

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36451586

Grantová podpora
P 25643 Austrian Science Fund FWF - Austria
P 22280 Austrian Science Fund FWF - Austria

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.

AGRARIA Department Mediterranean University of Reggio Calabria Reggio Calabria Italy

Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla Yunnan China

Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal

CNR Istituto di Ricerca sugli Ecosistemi Terrestri IRET Sesto Fiorentino Italy

Cold and Arid Regions Environmental and Engineering Research Institute Chinese Academy of Sciences Beijing China

Department of Agricultural Sciences University of Naples Federico 2 Portici Napoli Italy

Department of Botany Leopold Franzens University of Innsbruck Innsbruck Austria

Department of Ecology School of Life Sciences State Key Laboratory of Biocontrol Sun Yat sen University Guangzhou China

Department of Forest Ecology Silva Tarouca Research Institute for Landscape and Ornamental Gardening Průhonice Czech Republic

Department of Forests Natural Resources Institute Finland Espoo Finland

Department of Geography and Regional Planning Environmental Science Institute University of Zaragoza Zaragoza Spain

Department of Physical Geography and Geoecology Charles University Prague Czech Republic

Department of Sciences University of Alberta Camrose Alberta Canada

Department of Wood Science and Wood Technology Mendel University in Brno Brno Czech Republic

Dipartimento di Agricoltura Ambiente e Alimenti Università degli Studi del Molise Campobasso Italy

Forest Research Institute Université du Quebec en Abitibi Témiscamingue Rouyn Noranda Quebec Canada

IGN Direction Interrégionale NordEst Champigneulles France

Institute of Botany University of Hohenheim Stuttgart Germany

Institute of Economics and Trade Siberian Federal University Krasnoyarsk Russia

Instituto Pirenaico de Ecología Zaragoza Spain

Izmir Katip Çelebi University Faculty of Forestry Izmir Turkey

Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System Guangdong Open Laboratory of Geospatial Information Technology and Application Guangzhou Institute of Geography Guangzhou China

Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China

Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China

Laboratoire sur les écosystèmes terrestres boréaux Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi Quebec Canada

Laboratory of Plant Ecology Department of Plants and Crops Faculty of Bioscience Engineering Ghent University Ghent Belgium

MOE Key Laboratory of Biosystems Homeostasis and Protection College of Life Sciences Zhejiang University Hangzhou China

School of Engineering and Built Environment Griffith University Brisbane Australia

Slovenian Forestry Institute Ljubljana Slovenia

South China National Botanical Garden Guangzhou China

State Key Laboratory of Tibetan Plateau Earth System Environment and Resources Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China

Swiss Federal Research Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

The State Key Laboratory of Loess and Quaternary Geology Institute of Earth Environment Chinese Academy of Sciences Xi'an China

Université de Lorraine AgroParisTech INRAE Silva Nancy France

Zobrazit více v PubMed

Abe, H., Funada, R., Ohtani, J., & Fukazawa, K. (1997). Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees, 11(6), 328-332.

Antonucci, S., Rossi, S., Deslauriers, A., Lombardi, F., Marchetti, M., & Tognetti, R. (2015). Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. Tree Physiology, 35(10), 1086-1094.

Asse, D., Chuine, I., Vitasse, Y., Yoccoz, N. G., Delpierre, N., Badeau, V., Delestrade, A., & Randin, C. F. (2018). Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology, 252, 220-230.

Balting, D. F., AghaKouchak, A., Lohmann, G., & Ionita, M. (2021). Northern hemisphere drought risk in a warming climate. NPJ Climate and Atmospheric Science, 4, 61.

Basler, D., & Körner, C. (2012). Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165, 73-81.

Begum, S., Kudo, K., Rahman, M. H., Nakaba, S., Yamagishi, Y., Nabeshima, E., Nugroho, W. D., Oribe, Y., Kitin, P., & Jin, H.-O. (2018). Climate change and the regulation of wood formation in trees by temperature. Trees, 32(1), 3-15.

Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y., & Funada, R. (2013). Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiologia Plantarum, 147(1), 46-54.

Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J. J., Gross, N., Saiz, H., Maire, V., Lehmann, A., Rillig, M. C., Solé, R. V., & Lehmann, A. (2020). Global ecosystem thresholds driven by aridity. Science, 367(6479), 787-790.

Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23-35.

Chen, L., Huang, J. G., Ma, Q., Hänninen, H., Rossi, S., Piao, S., & Bergeron, Y. (2018). Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Global Change Biology, 24(9), 3969-3975.

Chen, L., Huang, J. G., Ma, Q., Hänninen, H., Tremblay, F., & Bergeron, Y. (2019). Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Global Change Biology, 25(3), 997-1004.

Cuny, H. E., Rathgeber, C. B., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., Rossi, S., Del Castillo, E. M., Campelo, F., Vavrčík, H., Camarero, J. J., Bryukhanova, M. V., Jyske, T., Gričar, J., Gryc, V., De Luis, M., Vieira, J., Čufar, K., Kirdyanov, A. V., … Vavrčík, H. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1(11), 1-6.

Delpierre, N., Lireux, S., Hartig, F., Camarero, J. J., Cheaib, A., Čufar, K., Cuny, H., Deslauriers, A., Fonti, P., Gričar, J., Huang, J. G., Krause, C., Liu, G., de Luis, M., Mäkinen, H., Del Castillo, E. M., Morin, H., Nöjd, P., Oberhuber, W., … Gričar, J. (2019). Chilling and forcing temperatures interact to predict the onset of wood formation in northern hemisphere conifers. Global Change Biology, 25(3), 1089-1105.

Delpierre, N., Vitasse, Y., Chuine, I., Guillemot, J., Bazot, S., & Rathgeber, C. B. (2016). Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73(1), 5-25.

Deslauriers, A., Morin, H., & Begin, Y. (2003). Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Canadian Journal of Forest Research, 33(2), 190-200.

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813.

Elmendorf, S. C., Henry, G. H., Hollister, R. D., Fosaa, A. M., Gould, W. A., Hermanutz, L., Hofgaard, A., Jónsdóttir, I. S., Jorgenson, J. C., Lévesque, E., Magnusson, B., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Rixen, C., Tweedie, C. E., & Lévesque, E. (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 448-452.

Ettinger, A., Chamberlain, C., Morales-Castilla, I., Buonaiuto, D., Flynn, D., Savas, T., Samaha, J. A., & Wolkovich, E. (2020). Winter temperatures predominate in spring phenological responses to warming. Nature Climate Change, 10(12), 1137-1142.

Fox, J., & Weisberg, S. (2018). An R companion to applied regression. Sage publications.

Frey, S. J., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., & Betts, M. G. (2016). Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances, 2(4), e1501392.

Fu, Y. H., Piao, S., Zhou, X., Geng, X., Hao, F., Vitasse, Y., & Janssens, I. A. (2019). Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biology, 25(5), 1696-1703.

Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., & Peñuelas, J. (2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571), 104-107.

Gunderson, C. A., Edwards, N. T., Walker, A. V., O'Hara, K. H., Campion, C. M., & Hanson, P. J. (2012). Forest phenology and a warmer climate-growing season extension in relation to climatic provenance. Global Change Biology, 18(6), 2008-2025.

Hastie, T. J. (2017). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.

Hoffman, G. E., & Schadt, E. E. (2016). variancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics, 17(1), 1-13.

Huang, J.-G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., & Liang, E. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in northern hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20645-20652.

Kharouba, H. M., Ehrlén, J., Gelman, A., Bolmgren, K., Allen, J. M., Travers, S. E., & Wolkovich, E. M. (2018). Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 115(20), 5211-5216.

Körner, C., & Basler, D. (2010). Phenology under global warming. Science, 327(5972), 1461-1462.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2014). lmerTest: Tests for random and fixed effects for linear mixed effect models. R package version 2.0-11. http://CRAN.R-project.org/package=lmerTest

Logan, M. L., Cox, R. M., & Calsbeek, R. (2014). Natural selection on thermal performance in a novel thermal environment. Proceedings of the National Academy of Sciences of the United States of America, 111(39), 14165-14169.

Ma, Q., Huang, J.-G., Hänninen, H., & Berninger, F. (2018). Reduced geographical variability in spring phenology of temperate trees with recent warming. Agricultural and Forest Meteorology, 256, 526-533.

McClanahan, T. R., Darling, E. S., Maina, J. M., Muthiga, N. A., D'agata, S., Jupiter, S. D., Arthur, R., Wilson, S. K., Mangubhai, S., Nand, Y., Ussi, A. M., Humphries, A. T., Patankar, V. J., Guillaume, M. M. M., Keith, S. A., Shedrawi, G., Julius, P., Grimsditch, G., Ndagala, J., & Nand, Y. (2019). Temperature patterns and mechanisms influencing coral bleaching during the 2016 El Niño. Nature Climate Change, 9(11), 845-851.

Meng, L., Mao, J., Zhou, Y., Richardson, A. D., Lee, X., Thornton, P. E., Ricciuto, D. M., Li, X., Dai, Y., Shi, X., & Jia, G. (2020). Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proceedings of the National Academy of Sciences of the United States of America, 117(8), 4228-4233.

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Ricciuto, D. M., Li, X., Dai, Y., Shi, X., & Briede, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969-1976.

Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L., & Reich, P. B. (2020). Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 117(19), 10397-10405.

Moser, L., Fonti, P., Büntgen, U., Esper, J., Luterbacher, J., Franzen, J., & Frank, D. (2010). Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiology, 30(2), 225-233.

Muggeo, V. M. (2008). Segmented: An R package to fit regression models with broken-line relationships. R News, 8(1), 20-25.

Mura, C., Buttò, V., Silvestro, R., Deslauriers, A., Charrier, G., Raymond, P., & Rossi, S. (2022). The early bud gets the cold: Diverging spring phenology drives exposure to late frost in a Picea mariana [(mill.) BSP] common garden. Physiologia Plantarum, 174, e13798.

Oribe, Y., Funada, R., & Kubo, T. (2003). Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) masters. Trees, 17(3), 185-192.

Ortiz-Bobea, A., Knippenberg, E., & Chambers, R. G. (2018). Growing climatic sensitivity of US agriculture linked to technological change and regional specialization. Science Advances, 4(12), eaat4343.

Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., … Frederiksen, S. B. (2019). Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568(7750), 88-92.

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., & Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25(6), 1922-1940.

Poulter, B., Aragão, L., Andela, N., Bellassen, V., Ciais, P., Kato, T., Xin, L., Baatarbileg, N., Sebastiaan, L., Niel, P., Philippe, P., Shilong, P., Sassan, S., Dmitry, S., Martjan, S., & Shivdenko, A. (2019). The global forest age dataset and its uncertainties (GFADv1. 1).

Prevéy, J., Vellend, M., Rüger, N., Hollister, R. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Clark, K., Cooper, E. J., Elberling, B., Fosaa, A. M., Henry, G. H. R., Høye, T. T., Jónsdóttir, I. S., Klanderud, K., Lévesque, E., Mauritz, M., Molau, U., Natali, S. M., … Elberling, B. (2017). Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Global Change Biology, 23(7), 2660-2671.

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E., Seyednasrollah, B., Krassovski, M. B., Latimer, J. M., Nettles, W. R., Hanson, P. J., Warren, J. M., & Heiderman, R. R. (2018). Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature, 560(7718), 368-371.

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173.

Rossi, S. (2015). Local adaptations and climate change: Converging sensitivity of bud break in black spruce provenances. International Journal of Biometeorology, 59(7), 827-835.

Rossi, S., Anfodillo, T., Čufar, K., Cuny, H. E., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J. G., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., … Huang, J. G. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the northern hemisphere. Global Change Biology, 22(11), 3804-3813.

Rossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R., & Borghetti, M. (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170(2), 301-310.

Venter, Z., Cramer, M., & Hawkins, H.-J. (2018). Drivers of woody plant encroachment over Africa. Nature Communications, 9(1), 1-7.

Vitasse, Y., Signarbieux, C., & Fu, Y. H. (2018). Global warming leads to more uniform spring phenology across elevations. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 1004-1008.

Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2012). Smatr 3-an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3(2), 257-259.

Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., Pau, S., Regetz, J., Davies, T. J., Kraft, N. J., Ault, T. R., Bolmgren, K., Mazer, S. J., McCabe, G. J., McGill, B. J., Parmesan, C., Salamin, N., Schwartz, M. D., & Cleland, E. E. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485(7399), 494-497.

Zohner, C. M., Benito, B. M., Svenning, J.-C., & Renner, S. S. (2016). Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6(12), 1120-1123.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...