Individual variability in habitat selection by aquatic insects is driven by taxonomy rather than specialisation

. 2022 Dec 01 ; 12 (1) : 20735. [epub] 20221201

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36456650
Odkazy

PubMed 36456650
PubMed Central PMC9715563
DOI 10.1038/s41598-022-25363-3
PII: 10.1038/s41598-022-25363-3
Knihovny.cz E-zdroje

Habitat selection, the choice of a habitat based on its perceived quality, is a key mechanism structuring freshwater communities. To date, individual variability in habitat selection has been neglected, and specialisation has never been considered in this type of studies. We examined the individual differences in the habitat selection of backswimmers (Notonectidae) and diving beetles (Dytiscidae). From each family, we selected one habitat generalist able to coexist with fish (Notonecta glauca, Dytiscus marginalis), and one species specialised to fishless habitats (Notonecta obliqua, Acilius sulcatus). We performed a mesocosm experiment quantifying the consistency in individuals' decisions in response to fish and vegetation structure, in relation to sex and specialisation. Neither the overall pattern of preferences nor consistency in individuals' decisions differed between specialists and generalists or between the sexes, but both were consistent within families. At the population level, backswimmers preferred fishless pools with submersed and floating macrophytes, while diving beetles showed no clear preferences. Individual decisions of backswimmers were consistent and likely driven by conspecific/heterospecific attraction. In diving beetles, individual decisions were primarily density-dependent. Our results reinforce the significance of habitat selectivity for aquatic community assembly, while suggesting a range of mechanisms driving variability in individual behaviour.

Zobrazit více v PubMed

Rosenzweig ML. Habitat selection and population interactions: the search for mechanism. Am. Nat. 1991;137:S5–S28. doi: 10.1086/285137. DOI

Binckley CA, Resetarits WJ. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 2005;1:370–374. doi: 10.1098/rsbl.2005.0310. PubMed DOI PMC

Foltz SJ, Dodson SI. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia. 2009;621:49–62. doi: 10.1007/s10750-008-9631-6. DOI

Resetarits WJ. Habitat selection behaviour links local and regional scales in aquatic systems: Habitat selection at multiple spatial scales. Ecol. Lett. 2005;8:480–486. doi: 10.1111/j.1461-0248.2005.00747.x. PubMed DOI

Leclerc M, et al. Quantifying consistent individual differences in habitat selection. Oecologia. 2016;180:697–705. doi: 10.1007/s00442-015-3500-6. PubMed DOI

Morris DW. Adaptation and habitat selection in the eco-evolutionary process. Proc. R. Soc. B Biol. Sci. 2011;278:2401–2411. doi: 10.1098/rspb.2011.0604. PubMed DOI PMC

Resetarits WJ. Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae) Oecologia. 2001;129:155–160. doi: 10.1007/s004420100704. PubMed DOI

Wellborn GA, Skelly DK, Werner EE. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 1996;27:337–363. doi: 10.1146/annurev.ecolsys.27.1.337. DOI

Klečka J, Boukal DS. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS ONE. 2012;7:e37741. doi: 10.1371/journal.pone.0037741. PubMed DOI PMC

Nilsson PA, Brönmark C. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos. 2000;88:539–546. doi: 10.1034/j.1600-0706.2000.880310.x. DOI

Šigutová H, et al. Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa. Sci. Rep. 2021;11:18928. doi: 10.1038/s41598-021-98632-2. PubMed DOI PMC

Pintar MR, Resetarits WJ. Match and mismatch: integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects. Ecol. Evol. 2021;11:1902–1917. doi: 10.1002/ece3.7181. PubMed DOI PMC

Pintar MR, Resetarits WJ., Jr Out with the old, in with the new: oviposition preference matches larval success in cope’s gray treefrog Hyla chrysoscelis. J. Herpetol. 2017;51:186–189. doi: 10.1670/16-019. DOI

Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): an experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica22, 27–44 (1993).

Fortin D, Morris DW, McLoughlin PD. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evol. 2008;54:311–328. doi: 10.1560/IJEE.54.3-4.311. DOI

McLoughlin PD, Boyce MS, Coulson T, Clutton-Brock T. Lifetime reproductive success and density-dependent, multi-variable resource selection. Proc. R. Soc. B Biol. Sci. 2006;273:1449–1454. doi: 10.1098/rspb.2006.3486. PubMed DOI PMC

Morris DW. Scales and costs of habitat selection in heterogeneous landscapes. Evol. Ecol. 1992;6:412–432. doi: 10.1007/BF02270701. DOI

McLoughlin PD, Morris DW, Fortin D, Wal EV, Contasti AL. Considering ecological dynamics in resource selection functions. J. Anim. Ecol. 2010;79:4–12. doi: 10.1111/j.1365-2656.2009.01613.x. PubMed DOI

Leclerc M, Dussault C, St-Laurent M-H. Behavioural strategies towards human disturbances explain individual performance in woodland caribou. Oecologia. 2014;176:297–306. doi: 10.1007/s00442-014-3012-9. PubMed DOI

Bolnick DI, et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 2003;161:1–28. doi: 10.1086/343878. PubMed DOI

Sheppard CE, et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 2018;21:665–673. doi: 10.1111/ele.12933. PubMed DOI PMC

Forstmeier W, Birkhead TR. Repeatability of mate choice in the zebra finch: consistency within and between females. Anim. Behav. 2004;68:1017–1028. doi: 10.1016/j.anbehav.2004.02.007. DOI

Gómez-Laplaza LM. The influence of social status on shoaling preferences in the freshwater angelfish (Pterophyllum scalare) Behaviour. 2005;142:827–844. doi: 10.1163/1568539054729141. DOI

Gillingham MP, Parker KL. The importance of individual variation in defining habitat selection by moose in northern British Columbia. Alces. 2008;44:7–20.

Lesmerises R, St-Laurent M-H. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears. Oecologia. 2017;185:415–425. doi: 10.1007/s00442-017-3939-8. PubMed DOI

van Beest FM, et al. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 2014;83:147–156. doi: 10.1111/1365-2656.12115. PubMed DOI

Fretwell SD, Lucas HL. On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development. Biotheoretica. 1970;19:16–36. doi: 10.1007/BF01601953. DOI

Binckley CA, Resetarits WJ. Functional equivalence of non-lethal effects: generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos. 2003;102:623–629. doi: 10.1034/j.1600-0706.2003.12483.x. DOI

Kraus JM, Vonesh JR. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 2010;79:795–802. PubMed

Pollard CJ, et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 2017;81:720–727. doi: 10.1002/jwmg.21232. DOI

Calenge C, Dufour AB, Maillard D. K-select analysis: a new method to analyse habitat selection in radio-tracking studies. Ecol. Model. 2005;186:143–153. doi: 10.1016/j.ecolmodel.2004.12.005. DOI

Freitas C, Kovacs KM, Lydersen C, Ims RA. A novel method for quantifying habitat selection and predicting habitat use. J. Appl. Ecol. 2008;45:1213–1220.

Mitchell LJ, Kohler T, White PCL, Arnold KE. High interindividual variability in habitat selection and functional habitat relationships in European nightjars over a period of habitat change. Ecol. Evol. 2020;10:5932–5945. doi: 10.1002/ece3.6331. PubMed DOI PMC

Richter L, et al. So close and yet so different: the importance of considering temporal dynamics to understand habitat selection. Basic Appl. Ecol. 2020;43:99–109. doi: 10.1016/j.baae.2020.02.002. DOI

Tyler JA, Rose KA. Individual variability and spatial heterogeneity in fish population models. Rev. Fish Biol. Fish. 1994;4:91–123. doi: 10.1007/BF00043262. DOI

Córdoba-Aguilar, A. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. (Oxford University Press, 2008).

Sandall EL, Fischer B. Be a professional: attend to the insects. Am. Entomol. 2019;65:176–179. doi: 10.1093/ae/tmz044. DOI

Blaustein, L. Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community. in Evolutionary theory and processes: modern perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).

Helebrandová JB, Pyszko P, Dolný A. Behavioural phenotypic plasticity of submerged oviposition in damselflies (Insecta: Odonata) Insects. 2019;10:124. doi: 10.3390/insects10050124. PubMed DOI PMC

Hollis K, Guillette L. What associative learning in insects tells us about the evolution of learning and fixed behavior. Int. J. Comp. Psychol. 2015;28:25706. doi: 10.46867/ijcp.2015.28.01.07. DOI

Papaj, D. R. & Lewis, A. C. Insect Learning: Ecological and Evolutinary Perspectives. (Chapman & Hall, 1993).

Simons M, Tibbetts E. Insects as models for studying the evolution of animal cognition. Curr. Opin. Insect Sci. 2019;34:117–122. doi: 10.1016/j.cois.2019.05.009. PubMed DOI

Benard MF. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 2004;35:651–673. doi: 10.1146/annurev.ecolsys.35.021004.112426. DOI

Cook WL, Streams FA. Fish predation on Notonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia. 1984;64:177–183. doi: 10.1007/BF00376868. PubMed DOI

Larson DJ. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 1985;11:245–498.

Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects22, 81–98 (2000).

Lock K, Adriaens T, Meutter FVD, Goethals P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 2013;49:121–128. doi: 10.1051/limn/2013047. DOI

Macan TT. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 1976;45:913–922. doi: 10.2307/3589. DOI

Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana43 (Suppl.), 1–289 (2007).

Åbjörnsson K, Wagner BMA, Axelsson A, Bjerselius R, Olsén KH. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis) Oecologia. 1997;111:166–171. doi: 10.1007/s004420050221. PubMed DOI

Gioria M, Schaffers A, Bacaro G, Feehan J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 2010;143:1125–1133. doi: 10.1016/j.biocon.2010.02.007. DOI

Bergsten J, Miller KB. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 2005;31:145–197. doi: 10.1111/j.1365-3113.2005.00309.x. DOI

Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).

Miller, K. B. & Bergsten, J. Predaceous diving beetle sexual systems. in Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 199–234 (Springer Netherlands, 2014).

Culler, L. E., Ohba, S. & Crumrine, P. Predator-prey interactions of dytiscids. in Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).

Baines CB, McCauley SJ, Rowe L. Dispersal depends on body condition and predation risk in the semi-aquatic insect Notonecta undulata. Ecol. Evol. 2015;5:2307–2316. doi: 10.1002/ece3.1508. PubMed DOI PMC

Baines CB, Ferzoco IM, McCauley SJ. Sex-biased dispersal is independent of sex ratio in a semiaquatic insect. Behav. Ecol. Sociobiol. 2017;71:119. doi: 10.1007/s00265-017-2348-7. DOI

Hungerford HB. The biology and ecology of aquatic and semiaquatic Hemiptera. Univ. Kans. Sci. Bull. 1919;11:3–334.

Streams FA. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 1992;85:265–273. doi: 10.1093/aesa/85.3.265. DOI

Halekoh U, Højsgaard S, Yan J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 2006;15:1–11. doi: 10.18637/jss.v015.i02. DOI

Lenth RV. Least-squares means: the R package lsmeans. J. Stat. Softw. 2016;69:1–33. doi: 10.18637/jss.v069.i01. DOI

Bates A, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 2017;8:1639–1644. doi: 10.1111/2041-210X.12797. DOI

R Core Team. R: A language and environment for statistical computing. (2021).

Harvill, M. L. The antipredatory behavior of the aquatic diving beetle, Coptotomus venustus (Say)(Coleoptera: Dytiscidae) in response to fish predation. (Texas A&M University, 1994).

McCauley SJ, Rowe L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 2010;6:449–452. doi: 10.1098/rsbl.2009.1082. PubMed DOI PMC

Schoeppner NM, Relyea RA. Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 2005;8:505–512. doi: 10.1111/j.1461-0248.2005.00744.x. PubMed DOI

Roberts G. Why individual vigilance declines as group size increases. Anim. Behav. 1996;51:1077–1086. doi: 10.1006/anbe.1996.0109. DOI

Giller PS. Locomotory efficiency in the predation strategies of the British Notonecta (Hempitera, Heteroptera) Oecologia. 1982;52:273–277. doi: 10.1007/BF00363849. PubMed DOI

Gittelman SH. Locomotion and predatory strategy in backswimmers (Hemiptera: Notonectidae) Am. Midl. Nat. 1974;92:496–500. doi: 10.2307/2424316. DOI

Morris DW. Density-dependent habitat selection: testing the theory with fitness data. Evol. Ecol. 1989;3:80–94. doi: 10.1007/BF02147934. DOI

Holt RD. Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 1985;28:181–208. doi: 10.1016/0040-5809(85)90027-9. DOI

Briers, R. A. Metapopulation ecology of Notonecta in small ponds. Doctoral dissertation. (1999).

Popham EJ. The migration of aquatic bugs with special reference to the Corixidae (Hemiptera Heteroptera) Arch. Für Hydrobiol. 1964;60:450–496.

Doligez B, Cadet C, Danchin E, Boulinier T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 2003;66:973–988. doi: 10.1006/anbe.2002.2270. DOI

Pintar MR, Resetarits WJ. Aquatic beetles influence colonization of disparate taxa in small lentic systems. Ecol. Evol. 2020;10:12170–12182. doi: 10.1002/ece3.6845. PubMed DOI PMC

Sebastián-González E, Sánchez-Zapata JA, Botella F, Ovaskainen O. Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence. Proc. R. Soc. B Biol. Sci. 2010;277:2983–2990. doi: 10.1098/rspb.2010.0244. PubMed DOI PMC

Giller PS, McNeill S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera) J. Anim. Ecol. 1981;50:789–808. doi: 10.2307/4137. DOI

Buxton VL, Enos JK, Sperry JH, Ward MP. A review of conspecific attraction for habitat selection across taxa. Ecol. Evol. 2020;10:12690–12699. doi: 10.1002/ece3.6922. PubMed DOI PMC

Ferzoco IMC, Baines CB, McCauley SJ. Co-occurring Notonecta (Hemiptera: Heteroptera: Notonectidae) species differ in their behavioral response to cues of Belostoma (Hemiptera: Heteroptera: Belostomatidae) predation risk. Ann. Entomol. Soc. Am. 2019;112:402–408. doi: 10.1093/aesa/saz021. DOI

Roughgarden J. Evolution of niche width. Am. Nat. 1972;106:683–718. doi: 10.1086/282807. DOI

Ruckstuhl KE. Sexual segregation in vertebrates: proximate and ultimate causes. Integr. Comp. Biol. 2007;47:245–257. doi: 10.1093/icb/icm030. PubMed DOI

Hochkirch A, Gröning J, Krause S. Intersexual niche segregation in Cepero’s ground-hopper Tetrix ceperoi. Evol. Ecol. 2007;21:727–738. doi: 10.1007/s10682-006-9147-3. DOI

Romey WL, Wallace AC. Sex and the selfish herd: sexual segregation within nonmating whirligig groups. Behav. Ecol. 2007;18:910–915. doi: 10.1093/beheco/arm057. DOI

Main MB, Weckerly FW, Bleich VC. Sexual segregation in ungulates: new directions for research. J. Mammal. 1996;77:449–461. doi: 10.2307/1382821. DOI

Trivers, R. L. Parental investment and sexual selection. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) (Aldine Publishing Company, 1972).

Bonduriansky R. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. Camb. Philos. Soc. 2001;76:305–339. doi: 10.1017/S1464793101005693. PubMed DOI

Foster SE, Soluk DA. Protecting more than the wetland: The importance of biased sex ratios and habitat segregation for conservation of the Hine’s emerald dragonfly Somatochlora hineana Williamson. Biol. Conserv. 2006;127:158–166. doi: 10.1016/j.biocon.2005.08.006. DOI

Miller KB. The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol. J. Linn. Soc. 2003;79:359–388. doi: 10.1046/j.1095-8312.2003.00195.x. DOI

Watson PJ, Stallmann RR, Arnqvist G. Sexual conflict and the energetic costs of mating and mate choice in water striders. Am. Nat. 1998;151:46–58. doi: 10.1086/286101. PubMed DOI

Rowe L, Krupa JJ, Sih A. An experimental test of condition-dependent mating behavior and habitat choice by water striders in the wild. Behav. Ecol. 1996;7:474–479. doi: 10.1093/beheco/7.4.474. DOI

McLain DK, Pratt AE. The cost of sexual coercion and heterospecific sexual harassment on the fecundity of a host-specific, seed-eating insect (Neacoryphus bicrucis) Behav. Ecol. Sociobiol. 1999;46:164–170. doi: 10.1007/s002650050606. DOI

Stone GN. Female foraging responses to sexual harassment in the solitary bee Anthophora plumipes. Anim. Behav. 1995;50:405–412. doi: 10.1006/anbe.1995.0255. DOI

Martens A, Rehfeldt G. Female aggregation in Platycypha caligata (Odonata: Chlorocyphidae): A tactic to evade male interference during oviposition. Anim. Behav. 1989;38:369–374. doi: 10.1016/S0003-3472(89)80029-6. DOI

Kolar V, Boukal DS. Habitat preferences of the endangered diving beetle Graphoderus bilineatus: implications for conservation management. Insect Conserv. Divers. 2020;13:480–494. doi: 10.1111/icad.12433. DOI

Wilcox C. Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects. Isr. J. Zool. 2001;47:459–475. doi: 10.1560/92B4-15TH-U7WM-LLTW. DOI

Baines CB, Ferzoco IMC, McCauley SJ. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 2019;88:1263–1274. doi: 10.1111/1365-2656.13008. PubMed DOI

Liao W, Venn S, Niemelä J. Diving beetle (Coleoptera: Dytiscidae) community dissimilarity reveals how low landscape connectivity restricts the ecological value of urban ponds. Landsc. Ecol. 2022;37:1049–1058. doi: 10.1007/s10980-022-01413-z. DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.20440056

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace