Individual variability in habitat selection by aquatic insects is driven by taxonomy rather than specialisation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36456650
PubMed Central
PMC9715563
DOI
10.1038/s41598-022-25363-3
PII: 10.1038/s41598-022-25363-3
Knihovny.cz E-zdroje
- MeSH
- brouci * MeSH
- ekosystém MeSH
- Heteroptera * MeSH
- hmyz MeSH
- lidé MeSH
- specializace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Habitat selection, the choice of a habitat based on its perceived quality, is a key mechanism structuring freshwater communities. To date, individual variability in habitat selection has been neglected, and specialisation has never been considered in this type of studies. We examined the individual differences in the habitat selection of backswimmers (Notonectidae) and diving beetles (Dytiscidae). From each family, we selected one habitat generalist able to coexist with fish (Notonecta glauca, Dytiscus marginalis), and one species specialised to fishless habitats (Notonecta obliqua, Acilius sulcatus). We performed a mesocosm experiment quantifying the consistency in individuals' decisions in response to fish and vegetation structure, in relation to sex and specialisation. Neither the overall pattern of preferences nor consistency in individuals' decisions differed between specialists and generalists or between the sexes, but both were consistent within families. At the population level, backswimmers preferred fishless pools with submersed and floating macrophytes, while diving beetles showed no clear preferences. Individual decisions of backswimmers were consistent and likely driven by conspecific/heterospecific attraction. In diving beetles, individual decisions were primarily density-dependent. Our results reinforce the significance of habitat selectivity for aquatic community assembly, while suggesting a range of mechanisms driving variability in individual behaviour.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Zoology Faculty of Science Palacký University Olomouc Czech Republic
Zobrazit více v PubMed
Rosenzweig ML. Habitat selection and population interactions: the search for mechanism. Am. Nat. 1991;137:S5–S28. doi: 10.1086/285137. DOI
Binckley CA, Resetarits WJ. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 2005;1:370–374. doi: 10.1098/rsbl.2005.0310. PubMed DOI PMC
Foltz SJ, Dodson SI. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia. 2009;621:49–62. doi: 10.1007/s10750-008-9631-6. DOI
Resetarits WJ. Habitat selection behaviour links local and regional scales in aquatic systems: Habitat selection at multiple spatial scales. Ecol. Lett. 2005;8:480–486. doi: 10.1111/j.1461-0248.2005.00747.x. PubMed DOI
Leclerc M, et al. Quantifying consistent individual differences in habitat selection. Oecologia. 2016;180:697–705. doi: 10.1007/s00442-015-3500-6. PubMed DOI
Morris DW. Adaptation and habitat selection in the eco-evolutionary process. Proc. R. Soc. B Biol. Sci. 2011;278:2401–2411. doi: 10.1098/rspb.2011.0604. PubMed DOI PMC
Resetarits WJ. Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae) Oecologia. 2001;129:155–160. doi: 10.1007/s004420100704. PubMed DOI
Wellborn GA, Skelly DK, Werner EE. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 1996;27:337–363. doi: 10.1146/annurev.ecolsys.27.1.337. DOI
Klečka J, Boukal DS. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLoS ONE. 2012;7:e37741. doi: 10.1371/journal.pone.0037741. PubMed DOI PMC
Nilsson PA, Brönmark C. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos. 2000;88:539–546. doi: 10.1034/j.1600-0706.2000.880310.x. DOI
Šigutová H, et al. Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa. Sci. Rep. 2021;11:18928. doi: 10.1038/s41598-021-98632-2. PubMed DOI PMC
Pintar MR, Resetarits WJ. Match and mismatch: integrating consumptive effects of predators, prey traits, and habitat selection in colonizing aquatic insects. Ecol. Evol. 2021;11:1902–1917. doi: 10.1002/ece3.7181. PubMed DOI PMC
Pintar MR, Resetarits WJ., Jr Out with the old, in with the new: oviposition preference matches larval success in cope’s gray treefrog Hyla chrysoscelis. J. Herpetol. 2017;51:186–189. doi: 10.1670/16-019. DOI
Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): an experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica22, 27–44 (1993).
Fortin D, Morris DW, McLoughlin PD. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evol. 2008;54:311–328. doi: 10.1560/IJEE.54.3-4.311. DOI
McLoughlin PD, Boyce MS, Coulson T, Clutton-Brock T. Lifetime reproductive success and density-dependent, multi-variable resource selection. Proc. R. Soc. B Biol. Sci. 2006;273:1449–1454. doi: 10.1098/rspb.2006.3486. PubMed DOI PMC
Morris DW. Scales and costs of habitat selection in heterogeneous landscapes. Evol. Ecol. 1992;6:412–432. doi: 10.1007/BF02270701. DOI
McLoughlin PD, Morris DW, Fortin D, Wal EV, Contasti AL. Considering ecological dynamics in resource selection functions. J. Anim. Ecol. 2010;79:4–12. doi: 10.1111/j.1365-2656.2009.01613.x. PubMed DOI
Leclerc M, Dussault C, St-Laurent M-H. Behavioural strategies towards human disturbances explain individual performance in woodland caribou. Oecologia. 2014;176:297–306. doi: 10.1007/s00442-014-3012-9. PubMed DOI
Bolnick DI, et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 2003;161:1–28. doi: 10.1086/343878. PubMed DOI
Sheppard CE, et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 2018;21:665–673. doi: 10.1111/ele.12933. PubMed DOI PMC
Forstmeier W, Birkhead TR. Repeatability of mate choice in the zebra finch: consistency within and between females. Anim. Behav. 2004;68:1017–1028. doi: 10.1016/j.anbehav.2004.02.007. DOI
Gómez-Laplaza LM. The influence of social status on shoaling preferences in the freshwater angelfish (Pterophyllum scalare) Behaviour. 2005;142:827–844. doi: 10.1163/1568539054729141. DOI
Gillingham MP, Parker KL. The importance of individual variation in defining habitat selection by moose in northern British Columbia. Alces. 2008;44:7–20.
Lesmerises R, St-Laurent M-H. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears. Oecologia. 2017;185:415–425. doi: 10.1007/s00442-017-3939-8. PubMed DOI
van Beest FM, et al. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 2014;83:147–156. doi: 10.1111/1365-2656.12115. PubMed DOI
Fretwell SD, Lucas HL. On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development. Biotheoretica. 1970;19:16–36. doi: 10.1007/BF01601953. DOI
Binckley CA, Resetarits WJ. Functional equivalence of non-lethal effects: generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos. 2003;102:623–629. doi: 10.1034/j.1600-0706.2003.12483.x. DOI
Kraus JM, Vonesh JR. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 2010;79:795–802. PubMed
Pollard CJ, et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 2017;81:720–727. doi: 10.1002/jwmg.21232. DOI
Calenge C, Dufour AB, Maillard D. K-select analysis: a new method to analyse habitat selection in radio-tracking studies. Ecol. Model. 2005;186:143–153. doi: 10.1016/j.ecolmodel.2004.12.005. DOI
Freitas C, Kovacs KM, Lydersen C, Ims RA. A novel method for quantifying habitat selection and predicting habitat use. J. Appl. Ecol. 2008;45:1213–1220.
Mitchell LJ, Kohler T, White PCL, Arnold KE. High interindividual variability in habitat selection and functional habitat relationships in European nightjars over a period of habitat change. Ecol. Evol. 2020;10:5932–5945. doi: 10.1002/ece3.6331. PubMed DOI PMC
Richter L, et al. So close and yet so different: the importance of considering temporal dynamics to understand habitat selection. Basic Appl. Ecol. 2020;43:99–109. doi: 10.1016/j.baae.2020.02.002. DOI
Tyler JA, Rose KA. Individual variability and spatial heterogeneity in fish population models. Rev. Fish Biol. Fish. 1994;4:91–123. doi: 10.1007/BF00043262. DOI
Córdoba-Aguilar, A. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. (Oxford University Press, 2008).
Sandall EL, Fischer B. Be a professional: attend to the insects. Am. Entomol. 2019;65:176–179. doi: 10.1093/ae/tmz044. DOI
Blaustein, L. Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community. in Evolutionary theory and processes: modern perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).
Helebrandová JB, Pyszko P, Dolný A. Behavioural phenotypic plasticity of submerged oviposition in damselflies (Insecta: Odonata) Insects. 2019;10:124. doi: 10.3390/insects10050124. PubMed DOI PMC
Hollis K, Guillette L. What associative learning in insects tells us about the evolution of learning and fixed behavior. Int. J. Comp. Psychol. 2015;28:25706. doi: 10.46867/ijcp.2015.28.01.07. DOI
Papaj, D. R. & Lewis, A. C. Insect Learning: Ecological and Evolutinary Perspectives. (Chapman & Hall, 1993).
Simons M, Tibbetts E. Insects as models for studying the evolution of animal cognition. Curr. Opin. Insect Sci. 2019;34:117–122. doi: 10.1016/j.cois.2019.05.009. PubMed DOI
Benard MF. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 2004;35:651–673. doi: 10.1146/annurev.ecolsys.35.021004.112426. DOI
Cook WL, Streams FA. Fish predation on Notonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia. 1984;64:177–183. doi: 10.1007/BF00376868. PubMed DOI
Larson DJ. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 1985;11:245–498.
Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects22, 81–98 (2000).
Lock K, Adriaens T, Meutter FVD, Goethals P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 2013;49:121–128. doi: 10.1051/limn/2013047. DOI
Macan TT. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 1976;45:913–922. doi: 10.2307/3589. DOI
Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana43 (Suppl.), 1–289 (2007).
Åbjörnsson K, Wagner BMA, Axelsson A, Bjerselius R, Olsén KH. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis) Oecologia. 1997;111:166–171. doi: 10.1007/s004420050221. PubMed DOI
Gioria M, Schaffers A, Bacaro G, Feehan J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 2010;143:1125–1133. doi: 10.1016/j.biocon.2010.02.007. DOI
Bergsten J, Miller KB. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 2005;31:145–197. doi: 10.1111/j.1365-3113.2005.00309.x. DOI
Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).
Miller, K. B. & Bergsten, J. Predaceous diving beetle sexual systems. in Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 199–234 (Springer Netherlands, 2014).
Culler, L. E., Ohba, S. & Crumrine, P. Predator-prey interactions of dytiscids. in Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).
Baines CB, McCauley SJ, Rowe L. Dispersal depends on body condition and predation risk in the semi-aquatic insect Notonecta undulata. Ecol. Evol. 2015;5:2307–2316. doi: 10.1002/ece3.1508. PubMed DOI PMC
Baines CB, Ferzoco IM, McCauley SJ. Sex-biased dispersal is independent of sex ratio in a semiaquatic insect. Behav. Ecol. Sociobiol. 2017;71:119. doi: 10.1007/s00265-017-2348-7. DOI
Hungerford HB. The biology and ecology of aquatic and semiaquatic Hemiptera. Univ. Kans. Sci. Bull. 1919;11:3–334.
Streams FA. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 1992;85:265–273. doi: 10.1093/aesa/85.3.265. DOI
Halekoh U, Højsgaard S, Yan J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 2006;15:1–11. doi: 10.18637/jss.v015.i02. DOI
Lenth RV. Least-squares means: the R package lsmeans. J. Stat. Softw. 2016;69:1–33. doi: 10.18637/jss.v069.i01. DOI
Bates A, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 2017;8:1639–1644. doi: 10.1111/2041-210X.12797. DOI
R Core Team. R: A language and environment for statistical computing. (2021).
Harvill, M. L. The antipredatory behavior of the aquatic diving beetle, Coptotomus venustus (Say)(Coleoptera: Dytiscidae) in response to fish predation. (Texas A&M University, 1994).
McCauley SJ, Rowe L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 2010;6:449–452. doi: 10.1098/rsbl.2009.1082. PubMed DOI PMC
Schoeppner NM, Relyea RA. Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 2005;8:505–512. doi: 10.1111/j.1461-0248.2005.00744.x. PubMed DOI
Roberts G. Why individual vigilance declines as group size increases. Anim. Behav. 1996;51:1077–1086. doi: 10.1006/anbe.1996.0109. DOI
Giller PS. Locomotory efficiency in the predation strategies of the British Notonecta (Hempitera, Heteroptera) Oecologia. 1982;52:273–277. doi: 10.1007/BF00363849. PubMed DOI
Gittelman SH. Locomotion and predatory strategy in backswimmers (Hemiptera: Notonectidae) Am. Midl. Nat. 1974;92:496–500. doi: 10.2307/2424316. DOI
Morris DW. Density-dependent habitat selection: testing the theory with fitness data. Evol. Ecol. 1989;3:80–94. doi: 10.1007/BF02147934. DOI
Holt RD. Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 1985;28:181–208. doi: 10.1016/0040-5809(85)90027-9. DOI
Briers, R. A. Metapopulation ecology of Notonecta in small ponds. Doctoral dissertation. (1999).
Popham EJ. The migration of aquatic bugs with special reference to the Corixidae (Hemiptera Heteroptera) Arch. Für Hydrobiol. 1964;60:450–496.
Doligez B, Cadet C, Danchin E, Boulinier T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 2003;66:973–988. doi: 10.1006/anbe.2002.2270. DOI
Pintar MR, Resetarits WJ. Aquatic beetles influence colonization of disparate taxa in small lentic systems. Ecol. Evol. 2020;10:12170–12182. doi: 10.1002/ece3.6845. PubMed DOI PMC
Sebastián-González E, Sánchez-Zapata JA, Botella F, Ovaskainen O. Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence. Proc. R. Soc. B Biol. Sci. 2010;277:2983–2990. doi: 10.1098/rspb.2010.0244. PubMed DOI PMC
Giller PS, McNeill S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera) J. Anim. Ecol. 1981;50:789–808. doi: 10.2307/4137. DOI
Buxton VL, Enos JK, Sperry JH, Ward MP. A review of conspecific attraction for habitat selection across taxa. Ecol. Evol. 2020;10:12690–12699. doi: 10.1002/ece3.6922. PubMed DOI PMC
Ferzoco IMC, Baines CB, McCauley SJ. Co-occurring Notonecta (Hemiptera: Heteroptera: Notonectidae) species differ in their behavioral response to cues of Belostoma (Hemiptera: Heteroptera: Belostomatidae) predation risk. Ann. Entomol. Soc. Am. 2019;112:402–408. doi: 10.1093/aesa/saz021. DOI
Roughgarden J. Evolution of niche width. Am. Nat. 1972;106:683–718. doi: 10.1086/282807. DOI
Ruckstuhl KE. Sexual segregation in vertebrates: proximate and ultimate causes. Integr. Comp. Biol. 2007;47:245–257. doi: 10.1093/icb/icm030. PubMed DOI
Hochkirch A, Gröning J, Krause S. Intersexual niche segregation in Cepero’s ground-hopper Tetrix ceperoi. Evol. Ecol. 2007;21:727–738. doi: 10.1007/s10682-006-9147-3. DOI
Romey WL, Wallace AC. Sex and the selfish herd: sexual segregation within nonmating whirligig groups. Behav. Ecol. 2007;18:910–915. doi: 10.1093/beheco/arm057. DOI
Main MB, Weckerly FW, Bleich VC. Sexual segregation in ungulates: new directions for research. J. Mammal. 1996;77:449–461. doi: 10.2307/1382821. DOI
Trivers, R. L. Parental investment and sexual selection. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) (Aldine Publishing Company, 1972).
Bonduriansky R. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. Camb. Philos. Soc. 2001;76:305–339. doi: 10.1017/S1464793101005693. PubMed DOI
Foster SE, Soluk DA. Protecting more than the wetland: The importance of biased sex ratios and habitat segregation for conservation of the Hine’s emerald dragonfly Somatochlora hineana Williamson. Biol. Conserv. 2006;127:158–166. doi: 10.1016/j.biocon.2005.08.006. DOI
Miller KB. The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biol. J. Linn. Soc. 2003;79:359–388. doi: 10.1046/j.1095-8312.2003.00195.x. DOI
Watson PJ, Stallmann RR, Arnqvist G. Sexual conflict and the energetic costs of mating and mate choice in water striders. Am. Nat. 1998;151:46–58. doi: 10.1086/286101. PubMed DOI
Rowe L, Krupa JJ, Sih A. An experimental test of condition-dependent mating behavior and habitat choice by water striders in the wild. Behav. Ecol. 1996;7:474–479. doi: 10.1093/beheco/7.4.474. DOI
McLain DK, Pratt AE. The cost of sexual coercion and heterospecific sexual harassment on the fecundity of a host-specific, seed-eating insect (Neacoryphus bicrucis) Behav. Ecol. Sociobiol. 1999;46:164–170. doi: 10.1007/s002650050606. DOI
Stone GN. Female foraging responses to sexual harassment in the solitary bee Anthophora plumipes. Anim. Behav. 1995;50:405–412. doi: 10.1006/anbe.1995.0255. DOI
Martens A, Rehfeldt G. Female aggregation in Platycypha caligata (Odonata: Chlorocyphidae): A tactic to evade male interference during oviposition. Anim. Behav. 1989;38:369–374. doi: 10.1016/S0003-3472(89)80029-6. DOI
Kolar V, Boukal DS. Habitat preferences of the endangered diving beetle Graphoderus bilineatus: implications for conservation management. Insect Conserv. Divers. 2020;13:480–494. doi: 10.1111/icad.12433. DOI
Wilcox C. Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects. Isr. J. Zool. 2001;47:459–475. doi: 10.1560/92B4-15TH-U7WM-LLTW. DOI
Baines CB, Ferzoco IMC, McCauley SJ. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 2019;88:1263–1274. doi: 10.1111/1365-2656.13008. PubMed DOI
Liao W, Venn S, Niemelä J. Diving beetle (Coleoptera: Dytiscidae) community dissimilarity reveals how low landscape connectivity restricts the ecological value of urban ponds. Landsc. Ecol. 2022;37:1049–1058. doi: 10.1007/s10980-022-01413-z. DOI
figshare
10.6084/m9.figshare.20440056