Spotting Local Environments in Self-Assembled Monolayer-Protected Gold Nanoparticles
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36459668
PubMed Central
PMC9798909
DOI
10.1021/acsnano.2c08467
Knihovny.cz E-zdroje
- Klíčová slova
- ESR, SOAP, fluorinated nanoparticles, machine learning, mixed monolayers, multiscale modeling, nanoconfinement,
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- kovové nanočástice * chemie MeSH
- nanostruktury * chemie MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zlato MeSH
Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis to molecular sensing, cell targeting, imaging, and cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties that were inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e., self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs and detect and compare local environments in a way that is agnostic and automated, i.e., with no need of a priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being the thickness of the organic shell and solvation primary factors in the determining number and nature of multiple coexisting environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for the rational design of O-I nanomaterials instructed from data.
Department of Chemistry G Ciamician University of Bologna 1 40126 Bologna Italy
Department of Engineering and Architecture University of Trieste 34127 Trieste Italy
Department of Informatics Jan Evangelista Purkyně University 400 96 Ústí nad Labem Czech Republic
Department of Physics University of Trieste 34127 Trieste Italy
Zobrazit více v PubMed
Goodman E. D.; Zhou C.; Cargnello M. Design of organic/inorganic hybrid catalysts for energy and environmental applications. ACS Cent. Sci. 2020, 6, 1916–1937. 10.1021/acscentsci.0c01046. PubMed DOI PMC
Prins L. J. Emergence of complex chemistry on an organic monolayer. Acc. Chem. Res. 2015, 48, 1920–1928. 10.1021/acs.accounts.5b00173. PubMed DOI
Sun X.; Riccardi L.; De Biasi F.; Rastrelli F.; De Vivo M.; et al. Molecular-dynamics-simulation-directed rational design of nanoreceptors with targeted affinity. Angew. Chem., Int. Ed. 2019, 58, 7702–7707. 10.1002/anie.201902316. PubMed DOI
Zeiri O. Metallic-nanoparticle-based sensing: Utilization of mixed-ligand monolayers. ACS Sens. 2020, 5, 3806–3820. 10.1021/acssensors.0c02124. PubMed DOI
Grommet A. B.; Feller M.; Klajn R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020, 15, 256–271. 10.1038/s41565-020-0652-2. PubMed DOI
Zhu Q.; Murphy C. J.; Baker L. R. Opportunities for electrocatalytic CO2 reduction enabled by surface ligands. J. Am. Chem. Soc. 2022, 144, 2829–2840. 10.1021/jacs.1c11500. PubMed DOI
Chu Z.; Han Y.; Bian T.; De S.; Král P.; et al. Supramolecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 2019, 141, 1949–1960. 10.1021/jacs.8b09638. PubMed DOI
Szewczyk M.; Sobczak G.; Sashuk V. Photoswitchable catalysis by a small swinging molecule confined on the surface of a colloidal particle. ACS Catal. 2018, 8, 2810–2814. 10.1021/acscatal.8b00328. DOI
Mati I. K.; Edwards W.; Marson D.; Howe E. J.; Stinson S.; Kay E. R.; et al. Probing multiscale factors affecting the reactivity of nanoparticle-bound molecules. ACS Nano 2021, 15, 8295–8305. 10.1021/acsnano.0c09190. PubMed DOI
Kim M.; Dygas M.; Sobolev Y. I.; Beker W.; Zhuang Q.; Grzybowski B. A.; et al. On-nanoparticle gating units render an ordinary catalyst substrate- and site-selective. J. Am. Chem. Soc. 2021, 143, 1807–1815. 10.1021/jacs.0c09408. PubMed DOI
Cha M.; Emre E. S. T.; Xiao X.; Kim J.-Y.; Bogdan P.; et al. Unifying structural descriptors for biological and bioinspired nanoscale complexes. Nat. Comput. Sci. 2022, 2, 243–252. 10.1038/s43588-022-00229-w. PubMed DOI
Siek M.; Kandere-Grzybowska K.; Grzybowski B. A. Mixed-charge, pH-responsive nanoparticles for selective interactions with cells, organelles, and bacteria. Acc. Mater. Res. 2020, 1, 188–200. 10.1021/accountsmr.0c00041. DOI
Riccardi L.; Gabrielli L.; Sun X.; De Biasi F.; Rastrelli F.; et al. Nanoparticle-based receptors mimic protein-ligand recognition. Chem. 2017, 3, 92–109. 10.1016/j.chempr.2017.05.016. PubMed DOI PMC
Pecina A.; Rosa-Gastaldo D.; Riccardi L.; Franco-Ulloa S.; Milan E.; et al. On the metal-aided catalytic mechanism for phosphodiester bond cleavage performed by nanozymes. ACS Catal. 2021, 11, 8736–8748. 10.1021/acscatal.1c01215. PubMed DOI PMC
Cao-Milán R.; Gopalakrishnan S.; He L. D.; Huang R.; Wang L.-S.; et al. Thermally gated bio-orthogonal nanozymes with supramolecularly confined porphyrin catalysts for antimicrobial uses. Chem. 2020, 6, 1113–1124. 10.1016/j.chempr.2020.01.015. DOI
Zhang X.; Huang R.; Gopalakrishnan S.; Cao-Milán R.; Rotello V. M. Bioorthogonal nanozymes: Progress towards therapeutic applications. Trends Chem. 2019, 1, 90–98. 10.1016/j.trechm.2019.02.006. PubMed DOI PMC
Cao-Milán R.; He L. D.; Shorkey S.; Tonga G. Y.; Wang L.-S.; et al. Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Mol. Syst. Des. Eng. 2017, 2, 624–628. 10.1039/C7ME00055C. PubMed DOI PMC
Huang R.; Luther D. C.; Zhang X.; Gupta A.; Tufts S. A.; et al. Engineering the interface between inorganic nanoparticles and biological systems through ligand design. Nanomaterials 2021, 11, 1001.10.3390/nano11041001. PubMed DOI PMC
Wu M.; Vartanian A. M.; Chong G.; Pandiakumar A. K.; Hamers R. J.; et al. Solution NMR analysis of ligand environment in quaternary ammonium-terminated self-assembled monolayers on gold nanoparticles: The effect of surface curvature and ligand structure. J. Am. Chem. Soc. 2019, 141, 4316–4327. 10.1021/jacs.8b11445. PubMed DOI
Liu X.; Yu M.; Kim H.; Mameli M.; Stellacci F. Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR. Nat. Commun. 2012, 3, 1182.10.1038/ncomms2155. PubMed DOI PMC
Şologan M.; Marson D.; Polizzi S.; Pengo P.; Boccardo S.; et al. Patchy and Janus nanoparticles by self-organization of mixtures of fluorinated and hydrogenated alkanethiolates on the surface of a gold core. ACS Nano 2016, 10, 9316–9325. 10.1021/acsnano.6b03931. PubMed DOI
Luo Z.; Marson D.; Ong Q. K.; Loiudice A.; Kohlbrecher J.; et al. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. Nat. Commun. 2018, 9, 1343.10.1038/s41467-018-03699-7. PubMed DOI PMC
Luo Z.; Zhao Y.; Darwish T.; Wang Y.; Hou J.; et al. Mass spectrometry and Monte Carlo method mapping of nanoparticle ligand shell morphology. Nat. Commun. 2018, 9, 4478.10.1038/s41467-018-06939-y. PubMed DOI PMC
Lucarini M.; Franchi P.; Pedulli G. F.; Pengo P.; Scrimin P.; et al. EPR study of dialkyl nitroxides as probes to investigate the exchange of solutes between the ligand shell of monolayers of protected gold nanoparticles and aqueous solutions. J. Am. Chem. Soc. 2004, 126, 9326–9329. 10.1021/ja048554f. PubMed DOI
Lucarini M.; Pasquato L. ESR spectroscopy as a tool to investigate the properties of self-assembled monolayers protecting gold nanoparticles. Nanoscale 2010, 2, 668–676. 10.1039/b9nr00384c. PubMed DOI
Posocco P.; Gentilini C.; Bidoggia S.; Pace A.; Franchi P.; et al. Self-organization of mixtures of fluorocarbon and hydrocarbon amphiphilic thiolates on the surface of gold nanoparticles. ACS Nano 2012, 6, 7243–7253. 10.1021/nn302366q. PubMed DOI
Marson D.; Posel Z.; Posocco P. Molecular features for probing small amphiphilic molecules with self-assembled monolayer-protected nanoparticles. Langmuir 2020, 36, 5671–5679. 10.1021/acs.langmuir.9b03686. PubMed DOI PMC
Pellizzoni E.; Şologan M.; Daka M.; Pengo P.; Marson D.; et al. Thiolate end-group regulates ligand arrangement, hydration and affinity for small compounds in monolayer-protected gold nanoparticles. J. Colloid Interface Sci. 2022, 607, 1373–1381. 10.1016/j.jcis.2021.09.083. PubMed DOI
Marson D.; Guida F.; Şologan M.; Boccardo S.; Pengo P.; et al. Mixed fluorinated/hydrogenated self-assembled monolayer-protected gold nanoparticles: In silico and in vitro behavior. Small 2019, 15, 1900323.10.1002/smll.201900323. PubMed DOI
Musil F.; Grisafi A.; Bartók A. P.; Ortner C.; Csányi G.; et al. Physics-inspired structural representations for molecules and materials. Chem. Rev. 2021, 121, 9759–9815. 10.1021/acs.chemrev.1c00021. PubMed DOI
Gasparotto P.; Meißner R. H.; Ceriotti M. Recognizing local and global structural motifs at the atomic scale. J. Chem. Theory 2018, 14, 486–498. 10.1021/acs.jctc.7b00993. PubMed DOI
Shyshov O.; Haridas S. V.; Pesce L.; Qi H.; Gardin A.; et al. Living supramolecular polymerization of fluorinated cyclohexanes. Nat. Commun. 2021, 12, 3134.10.1038/s41467-021-23370-y. PubMed DOI PMC
Ofir Y.; Samanta B.; Arumugam P.; Rotello V. M. Controlled fluorination of FePt nanoparticles: Hydrophobic to superhydrophobic surfaces. Adv. Mater. 2007, 19, 4075–4079. 10.1002/adma.200700169. DOI
Marsh Z. M.; Lantz K. A.; Stefik M. QCM detection of molecule–nanoparticle interactions for ligand shells of varying morphology. Nanoscale 2018, 10, 19107–19116. 10.1039/C8NR05605F. PubMed DOI
Elbert K. C.; Jishkariani D.; Wu Y.; Lee J. D.; Donnio B.; et al. Design, self-assembly, and switchable wettability in hydrophobic, hydrophilic, and Janus dendritic ligand–gold nanoparticle hybrid materials. Chem. Mater. 2017, 29, 8737–8746. 10.1021/acs.chemmater.7b02928. DOI
Basham C. M.; Premadasa U. I.; Ma Y.-Z.; Stellacci F.; Doughty B.; et al. Nanoparticle-induced disorder at complex liquid–liquid interfaces: Effects of curvature and compositional synergy on functional surfaces. ACS Nano 2021, 15, 14285–14294. 10.1021/acsnano.1c02663. PubMed DOI
Pan S.; Richardson J. J.; Christofferson A. J.; Besford Q. A.; Zheng T.; et al. Fluorinated metal–organic coatings with selective wettability. J. Am. Chem. Soc. 2021, 143, 9972–9981. 10.1021/jacs.1c04396. PubMed DOI
Edwards W.; Marro N.; Turner G.; Kay E. R. Continuum tuning of nanoparticle interfacial properties by dynamic covalent exchange. Chem. Sci. 2018, 9, 125–133. 10.1039/C7SC03666C. PubMed DOI PMC
Stewart A.; Zheng S.; McCourt M. R.; Bell S. E. J. Controlling assembly of mixed thiol monolayers on silver nanoparticles to tune their surface properties. ACS Nano 2012, 6, 3718–3726. 10.1021/nn300629z. PubMed DOI PMC
Pengo P.; Şologan M.; Pasquato L.; Guida F.; Pacor S.; et al. Gold nanoparticles with patterned surface monolayers for nanomedicine: Current perspectives. Eur. Biophys. J. 2017, 46, 749–771. 10.1007/s00249-017-1250-6. PubMed DOI PMC
Luo Z.; Hou J.; Menin L.; Ong Q. K.; Stellacci F. Evolution of the ligand shell morphology during ligand exchange reactions on gold nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 13521–13525. 10.1002/anie.201708190. PubMed DOI
Singh C.; Ghorai P. K.; Horsch M. A.; Jackson A. M.; Larson R. G.; et al. Entropy-mediated patterning of surfactant-coated nanoparticles and surfaces. Phys. Rev. Lett. 2007, 99, 226106.10.1103/PhysRevLett.99.226106. PubMed DOI
Bock M.; Tyagi A. K.; Kreft J.-U.; Alt W. Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. Bull. Math. Biol. 2010, 72, 1696–1731. 10.1007/s11538-009-9498-3. PubMed DOI
Liang D.; Dahal U.; Wu M.; Murphy C. J.; Cui Q. Ligand length and surface curvature modulate nanoparticle surface heterogeneity and electrostatics. J. Phys. Chem. C 2020, 124, 24513–24525. 10.1021/acs.jpcc.0c08387. DOI
Kelkar A. S.; Dallin B. C.; Lehn R. C. V. Identifying nonadditive contributions to the hydrophobicity of chemically heterogeneous surfaces via dual-loop active learning. J. Chem. Phys. 2022, 156, 024701.10.1063/5.0072385. PubMed DOI
Chew A. K.; Dallin B. C.; Van Lehn R. C. The interplay of ligand properties and core size dictates the hydrophobicity of monolayer-protected gold nanoparticles. ACS Nano 2021, 15, 4534–4545. 10.1021/acsnano.0c08623. PubMed DOI
Hoff S. E.; Di Silvio D.; Ziolo R. F.; Moya S. E.; Heinz H. Patterning of self-assembled monolayers of amphiphilic multisegment ligands on nanoparticles and design parameters for protein interactions. ACS Nano 2022, 16, 8766–8783. 10.1021/acsnano.1c08695. PubMed DOI
Luo Z.; Murello A.; Wilkins D. M.; Kovacik F.; Kohlbrecher J.; et al. Determination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 25516–25523. 10.1073/pnas.1916180116. PubMed DOI PMC
Bartók A. P.; Kondor R.; Csányi G. On representing chemical environments. Phys. Rev. B 2013, 87, 184115.10.1103/PhysRevB.87.184115. DOI
Musil F.; De S.; Yang J.; Campbell J. E.; Day G. M.; et al. Machine learning for the structure–energy–property landscapes of molecular crystals. Chem. Sci. 2018, 9, 1289–1300. 10.1039/C7SC04665K. PubMed DOI PMC
Bartók A. P.; De S.; Poelking C.; Bernstein N.; Kermode J. R.; et al. Machine learning unifies the modeling of materials and molecules. Sci. Adv. 2017, 3, e1701816.10.1126/sciadv.1701816. PubMed DOI PMC
de Marco A. L.; Bochicchio D.; Gardin A.; Doni G.; Pavan G. M. Controlling exchange pathways in dynamic supramolecular polymers by controlling defects. ACS Nano 2021, 15, 14229–14241. 10.1021/acsnano.1c01398. PubMed DOI PMC
De S.; Bartók A. P.; Csányi G.; Ceriotti M. Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 2016, 18, 13754–13769. 10.1039/C6CP00415F. PubMed DOI
Ionita P.; Caragheorgheopol A.; Gilbert B. C.; Chechik V. EPR study of a place-exchange reaction on Au nanoparticles: Two branches of a disulfide molecule do not adsorb adjacent to each other. J. Am. Chem. Soc. 2002, 124, 9048–9049. 10.1021/ja0265456. PubMed DOI
Lucarini M.; Franchi P.; Pedulli G. F.; Gentilini C.; Polizzi S.; et al. Effect of core size on the partition of organic solutes in the monolayer of water-soluble nanoparticles: An ESR investigation. J. Am. Chem. Soc. 2005, 127, 16384–16385. 10.1021/ja0560534. PubMed DOI
Gentilini C.; Evangelista F.; Rudolf P.; Franchi P.; Lucarini M.; et al. Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates. J. Am. Chem. Soc. 2008, 130, 15678–15682. 10.1021/ja8058364. PubMed DOI
Gentilini C.; Franchi P.; Mileo E.; Polizzi S.; Lucarini M.; et al. Formation of patches on 3D sams driven by thiols with immiscible chains observed by ESR spectroscopy. Angew. Chem., Int. Ed. 2009, 48, 3060–3064. 10.1002/anie.200805321. PubMed DOI
Virtanen P.; Gommers R.; Oliphant T. E.; Haberland M.; Reddy T.; et al. Scipy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC
Himanen L.; Jäger M. O. J.; Morooka E. V.; Federici Canova F.; Ranawat Y. S.; et al. Dscribe: Library of descriptors for machine learning in materials science. Comput. Phys. Commun. 2020, 247, 106949.10.1016/j.cpc.2019.106949. DOI
Pedregosa F.; Varoquaux G.; Gramfort A.; Michel V.; Thirion B.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
Doniach S.; Sunjic M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C Solid State Phys. 1970, 3, 285–291. 10.1088/0022-3719/3/2/010. DOI