Rab11 and Its Role in Neurodegenerative Diseases
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
36464817
PubMed Central
PMC9726856
DOI
10.1177/17590914221142360
Knihovny.cz E-zdroje
- Klíčová slova
- Rab11, Rab11-FIPs, neurodegenerative diseases, vesicle trafficking,
- MeSH
- biologický transport genetika fyziologie MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- neurodegenerativní nemoci * genetika metabolismus MeSH
- neurony metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- membránové proteiny MeSH
- rab11 protein MeSH Prohlížeč
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Zobrazit více v PubMed
Akbergenova Y., Littleton J.T. (2017). Pathogenic Huntington alters BMP signaling and synaptic growth through local disruptions of endosomal compartments. Journal of Neuroscience, 37(12), 3425–3439. 10.1523/JNEUROSCI.2752-16.2017 PubMed DOI PMC
Anderson E., Maday S., Sfakianos J., Hull M., Winckler B., Sheff D., Fölsch H., Mellman I. (2005). Transcytosis of NgCAM in epithelial cells reflects differential signal recognition on the endocytic and secretory pathways. Journal of Cell Biology, 170(4), 595–605. 10.1083/jcb.200506051 PubMed DOI PMC
Aparicio G. I., Formoso K., León A., Frasch A. C., Scorticati C. (2020) Identification of potential interacting proteins with the extracellular loops of the neuronal glycoprotein M6a by TMT/MS. Frontiers in Synaptic Neuroscience, 12, 28. 10.3389/fnsyn.2020.00028 PubMed DOI PMC
Ascaño M., Richmond A., Borden P., Kuruvilla R. (2009). Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. Journal of Neuroscience, 29(37), 11674–11685. 10.1523/JNEUROSCI.1542-09.2009 PubMed DOI PMC
Assaker G., Ramel D., Wculek S. K., González-Gaitán M., Emery G. (2010). Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proceedings of the National Academy of Sciences of the United States of America, 107(52), 22558–22563. https://doi:10.1073/pnas.1010795108 PubMed PMC
Bacaj T., Ahmad M., Jurado S., Malenka R. C., Sudhof T. C. (2015) Synaptic function of Rab11Fip5: Selective requirement for hippocampal long-term depression. Journal of Neuroscience, 35(19), 7460–7474. 10.1523/JNEUROSCI.1581-14.2015 PubMed DOI PMC
Baetz N. W., Goldenring J. R. (2013). Rab11-family interacting proteins define spatially and temporally distinct regions within the dynamic Rab11a-dependent recycling system. Molecular Biology of the Cell, 24(5), 643–658. 10.1091/mbc.e12-09-0659 PubMed DOI PMC
Barnat M., Le Friec J., Benstaali C., Humbert S. (2017). Huntingtin-Mediated multipolar-bipolar transition of newborn cortical neurons is critical for their postnatal neuronal morphology. Neuron, 93(1), 99–114. 10.1016/j.neuron.2016.11.035 PubMed DOI
Barr F., Lambright D. G. (2010). Rab GEFs and GAPs. Current Opinion in Cell Biology, 22(4), 461–470. 10.1016/j.ceb.2010.04.007 PubMed DOI PMC
Belhadj A., Addou-Klouche L., Bouakline I., Medjamia M., Benammar H. J., Sahraoui T. (2020). Immunohistochemical staining for ras-related protein 25 (RAB25) associates with luminal B breast cancer subtype. Gulf Journal of Oncology, 1(32), 26–33. PubMed
Bhartur S. G., Calhoun B. C., Woodrum J., Kurkjian J., Iyer S., Lai F., Goldenring J. R. (2000). Genomic structure of murine Rab11 family members. Biochemical and Biophysical Research Communications, 269(2), 611–617. https://doi.org/10.1006/bbrc.2000.2334 PubMed
Bhuin T., Roy J. K. (2014). Rab proteins: The key regulators of intracellular vesicle transport. Experimental Cell Research, 328(1), 1–19. https://doi.org/10.1016/j.yexcr.2014.07.027 PubMed
Bodnar B., DeGruttola A., Zhu Y., Lin Y., Zhang Y., Mo X., Hu W. (2020). Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Translational Research, 224, 55–70. https://doi.org/10.1016/j.trsl.2020.05.001 PubMed PMC
Breda C., Nugent M. L., Estranero J. G., Kyriacou C. P., Outeiro T. F., Steinert J. R., Giorgini F. (2015). Rab11 modulates α-synuclein-mediated defects in synaptic transmission and behaviour. Human Molecular Genetics, 24(4), 1077–1091. https://doi.org/10.1093/hmg/ddu521 PubMed PMC
Buggia-Prévot V., Fernandez C. G., Riordan S., Vetrivel K. S., Roseman J., Waters J., Bindokas V. P., Vassar R., Thinakaran G. (2014). Axonal BACE1 dynamics and targeting in hippocampal neurons: A role for Rab11 GTPase. Molecular Neurodegeneration, 9, 1. https://doi.org/10.1186/1750-1326-9-1 PubMed PMC
Carson B. P., Del Bas J. M., Moreno-Navarrete J. M., Fernandez-Real J. M., Mora S. (2013). The rab11 effector protein FIP1 regulates adiponectin trafficking and secretion. PLoS One, 8(9), e74687. https://doi.org/10.1371/journal.pone.0074687 PubMed PMC
Casanova J. E., Wang X., Kumar R., Bhartur S. G., Navarre J., Woodrum J. E., Altschuler Y., Ray G. S., Goldenring J. R. (1999). Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Molecular Biology of the Cell, 10(1), 47–61. https://doi.org/10.1091/mbc.10.1.47 PubMed PMC
Caswell P. T., Chan M., Lindsay A. J., McCaffrey M. W., Boettiger D., Norman J. C. (2008). Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. Journal of Cell Biology, 183(1), 143–155. https://doi.org/10.1083/jcb.200804140 PubMed PMC
Chen S., Yoo H., Li C. H., Park C., Park G., Tan L. Y., Jung S., Park H. (2021). Real-time three-dimensional tracking of single vesicles reveals abnormal motion and pools of synaptic vesicles in neurons of Huntington’s disease mice. iScience, 24(10), 103181. https://doi.org/10.1016/j.isci.2021.103181 PubMed PMC
Chutna O. Gonçalves S. Villar-Piqué A. Guerreiro P., Marijanovic Z. Mendes T., Ramalho J. Emmanouilidou E. Ventura S. Klucken J., Barral D. C. Giorgini F. Vekrellis K. Outeiro T. F. (2014). The small GTPase Rab11 co-localizes with α-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Human molecular genetics, 23(25), 6732–6745. https://doi.org/10.1093/hmg/ddu391 PubMed
Correia S. S., Bassani S., Brown T. C., Lisé M. F., Backos D. S., El-Husseini A., Passafaro M., Esteban J. A. (2008). Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nature Neuroscience, 11(4), 457–466. https://doi.org/10.1038/nn2063 PubMed
Dabbeekeh J. T., Faitar S. L., Dufresne C. P., Cowell J. K. (2007). The EVI5 TBC domain provides the GTPase-activating protein motif for RAB11. Oncogene, 26(19), 2804–2808. https://doi.org/10.1038/sj.onc.1210081 PubMed
Das A., Guo W. (2011). Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond. Trends in Cell Biology, 21(17), 383–386. https://doi.org/10.1016/j.tcb.2011.03.006 PubMed PMC
Dirac-Svejstrup A. B., Sumizawa T., Pfeffer S. R. (1997). Identification of a GDI displacement factor that releases endosomal rab GTPases from rab-GDI. EMBO Journal, 16(3), 465–472. https://doi.org/10.1093/emboj/16.3.465 PubMed PMC
Dong W., Qin G., Shen R. (2016). Rab11-FIP2 promotes the metastasis of gastric cancer cells. International Journal of Cancer, 138(7), 1680–1688. https://doi.org/10.1002/ijc.29899 PubMed
Ducharme N. A., Hales C. M., Lapierre L. A., Ham A. J., Oztan A., Apodaca G., Goldenring J. R. (2006). MARK2/EMK1/Par-1Balpha Phosphorylation of Rab11-family interacting protein 2 is necessary for the timely establishment of polarity in Madin-Darby canine kidney cells. Molecular Biology of the Cell, 17(8), 3625–3637. https://doi.org/10.1091/mbc.e05-08-0736 PubMed PMC
Eathiraj S., Mishra A., Prekeris R., Lambright D. G. (2006). Structural basis for Rab11-mediated recruitment of FIP3 to recycling endosomes. Journal of Molecular Biology, 364(2), 121–135. https://doi.org/10.1016/j.jmb.2006.08.064 PubMed
Elias S., Mcguire J. R., Yu H. (2015). Huntingtin is required for epithelial polarity through RAB11A-mediated apical trafficking of PAR3-aPKC. PLoS Biology, 13(5), e1002142. https://doi.org/10.1371/journal.pbio.1002142 PubMed PMC
Essandoh K., Deng S., Wang X., Jiang M., Mu X., Peng J., Li Y., Peng T., Wagner K. U., Rubinstein J., & Fan G. C. (2019). Tsg101 positively regulates physiologic-like cardiac hypertrophy through FIP3-mediated endosomal recycling of IGF-1R. FASEB Journal, 33(6),, 7451–7466. https://doi.org/10.1096/fj.201802338RR PubMed PMC
Fader C. M., Sánchez D., Furlán M., Colombo M. I. (2008). Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic (Copenhagen, Denmark), 9(2), 230–250. https://doi.org/10.1111/j.1600-0854.2007.00677.x PubMed
Fan G. H., Lapierre L. A., Goldenring J. R., Sai J., Richmond A. (2004). Rab11-family interacting protein 2 and myosin VB are required for CXCR2 recycling and receptor-mediated chemotaxis. Molecular Biology of the Cell, 15(5), 2456–2469. https://doi: 10.1091/mbc.e03-09-0706 PubMed PMC
Fielding A. B., Schonteich E., Matheson J., Wilson G., Yu X., Hickson G. R., Srivastava S., Baldwin S. A., Prekeris R., Gould G. W. (2005). Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO Journal, 24(19), 3389–3399. https://doi.org/10.1038/sj.emboj.7600803 PubMed PMC
Gallo L. I., Liao Y., Ruiz W. G., Clayton D. R., Li M., Liu Y. J., Jiang Y., Fukuda M., Apodaca G., Yin X. M. (2014). TBC1D9B Functions as a GTPase-activating protein for Rab11a in polarized MDCK cells. Molecular Biology of the Cell, 25(23), 3779–3797. https://doi.org/10.1091/mbc.E13-10-0604 PubMed PMC
Garcia M. D., Formoso K., Aparicio G. I., Frasch A., Scorticati C. (2017). The membrane glycoprotein M6a endocytic/recycling pathway involves clathrin-mediated endocytosis and affects neuronal synapses. Frontiers in Molecular Neuroscience, 10, 296. https://doi.org/10.3389/fnmol.2017.00296 PubMed PMC
Giorgini F., Steinert J. R. (2013). Rab11 as a modulator of synaptic transmission. Communicative & Integrative Biology, 6(6), e26807. https://doi.org/10.4161/cib.26807 PubMed PMC
Goldenring J. R., Shen K. R., Vaughan H. D., Modlin I. M. (1993). Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. Journal of Biological Chemistry, 268(25), 18419–18422. PubMed
Gonçalves S. A., Macedo D., Raquel H., Simões P. D., Giorgini F., Ramalho J. S., Barral D. C., Ferreira Moita L., Outeiro T. F. (2016). shRNA-based screen identifies endocytic recycling pathway components that act as genetic modifiers of alpha-synuclein aggregation, secretion and toxicity. PLoS Genetics, 12(4), e1005995. https://doi.org/10.1371/journal.pgen.1005995 PubMed PMC
Gorska M. M., Liang Q., Karim Z., Alam R. (2009). Uncoordinated 119 protein controls trafficking of Lck via the Rab11 endosome and is critical for immunological synapse formation. Journal of Immunology, 183(3), 1675–1684. https://doi.org/10.4049/jimmunol.0900792 PubMed
Goto-Ito S., Morooka N., Yamagata A., Sato Y., Sato K., Fukai S. (2019). Structural basis of guanine nucleotide exchange for Rab11 by SH3BP5. Life Science Alliance, 2(2), e201900297. https://doi.org/10.26508/lsa.201900297 PubMed PMC
Greenfield J. P., Leung L. W., Cai D., Kaasik K., Gross R. S., Rodriguez-Boulan E., Greengard P., Xu H. (2002). Estrogen lowers Alzheimer beta-amyloid generation by stimulating trans-Golgi network vesicle biogenesis. Journal of Biological Chemistry, 277(14), 12128–12136. https://doi.org/10.1074/jbc.M110009200 PubMed
Grosshans B. L., Ortiz D., Novick P. (2006). Rabs and their effectors: Achieving specificity in membrane traffic. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11821–11827. https://doi.org/10.1073/pnas.0601617103 PubMed PMC
Hales C. M., Griner R., Hobdy-Henderson K. C., Dorn M. C., Hardy D., Kumar R., Navarre J., Chan E. K., Lapierre L. A., Goldenring J. R. (2001). Identification and characterization of a family of Rab11-interacting proteins. Journal of Biological Chemistry, 276(42), 39067–39075. https://doi.org/10.1074/jbc.M104831200 PubMed
Hara Y., Fukaya M., Sugawara T., Sakagami H. (2018). FIP4/Arfophilin-2 Plays overlapping but distinct roles from FIP3/arfophilin-1 in neuronal migration during cortical layer formation. European Journal of Neuroscience, 48(9), 3082–3096. https://doi.org/10.1111/ejn.14199 PubMed
He Y., Ye M., Zhou L., Shan Y., Lu G., Zhou Y., Zhong J., Zheng J., Xue Z., Cai Z. (2017). High Rab11-FIP4 expression predicts poor prognosis and exhibits tumor promotion in pancreatic cancer. International Journal of Oncology, 50(2), 396–404. https://doi.org/10.3892/ijo.2016.3828 PubMed PMC
Holm M. M., Kaiser J., Schwab M. E. (2018). Extracellular vesicles: Multimodal envoys in neural maintenance and repair. Trends in Neurosciences, 41(6), 360–372. https://doi.org/10.1016/j.tins.2018.03.006 PubMed
Horgan C. P., Hanscom S. R., Jolly R. S., Futter C. E., McCaffrey M. W. (2010). Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment. Journal of Cell Science, 123(Pt 2), 181–191. https://doi.org/10.1242/jcs.052670 PubMed
Horgan C. P., Hanscom S. R., Kelly E. E., McCaffrey M. W. (2012). Tumor susceptibility gene 101 (TSG101) is a novel binding-partner for the class II Rab11-FIPs. PLoS One, 7(2), e32030. https://doi.org/10.1371/journal.pone.0032030 PubMed PMC
Hu W. H., Pendergast J. S., Mo X. M., Brambilla R., Bracchi-Ricard V., Li F., Walters W. M., Blits B., He L., Schaal S. M., Bethea J. R. (2005). NIBP, a novel NIK and IKK(beta)-binding protein that enhances NF-(kappa)B activation. Journal of Biological Chemistry, 280(32), 29233–29241. https://doi.org/10.1074/jbc.M501670200 PubMed PMC
Ingmundson A., Delprato A., Lambright D. G., Roy C. R. (2007). Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature, 450(7168), 365–369. https://doi.org/10.1038/nature06336 PubMed
Inoshita T., Arano T., Hosaka Y., Meng H., Umezaki Y., Kosugi S., Morimoto T., Koike M., Chang H. Y., Imai Y., Hattori N. (2017). Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in drosophila. Human Molecular Genetics, 26(5), 2933–2948. https://doi.org/10.1093/hmg/ddx179 PubMed
Jagoe W. N., Lindsay A. J., Read R. J., McCoy A. J., McCaffrey M. W., Khan A. R. (2006). Crystal structure of rab11 in complex with rab11 family interacting protein 2. Structure (London, England: 1993), 14(8), 1273–1283. https://doi.org/10.1016/j.str.2006.06.010 PubMed
Jeong H., Lim K. M., Kim K. H., Cho Y., Lee B., Knowles B. C., Roland J. T., Zwerner J. P., Goldenring J. R., Nam K. T. (2019). Loss of Rab25 promotes the development of skin squamous cell carcinoma through the dysregulation of integrin trafficking. Journal of Pathology, 249(2), 227–240. https://doi.org/10.1002/path.5311 PubMed PMC
Jing J., Junutula J. R., Wu C., Burden J., Matern H., Peden A. A., Prekeris R. (2010). FIP1/RCP Binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Molecular Biology of the Cell, 21(17), 3041–3053. https://doi.org/10.1091/mbc.E10-04-0313 PubMed PMC
Kawauchi T., Sekine K., Shikanai M., Chihama K., Tomita K., Kubo K., Nakajima K., Nabeshima Y., Hoshino M. (2010). Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron, 67(4), 588–602. https://doi.org/10.1016/j.neuron.2010.07.007 PubMed
Ke Y., Weng M., Chhetri G., Usman M., Li Y., Yu Q., Ding Y., Wang Z., Wang X., Sultana P., DiFiglia M., Li X. (2020). Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. Science Advances, 6(47), eabb7781. https://doi.org/10.1126/sciadv.abb7781 PubMed PMC
Kim J. J., Lipatova Z., Segev N. (2016). TRAPP Complexes in secretion and autophagy. Frontiers in Cell and Developmental Biology, 4, 20. https://doi.org/10.3389/fcell.2016.00020 PubMed PMC
Knödler A., Feng S., Zhang J., Zhang X., Das A., Peränen J. & Guo W. (2010). Coordination of Rab8 and Rab11 in primary ciliogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6346–6351. https://doi.org/10.1073/pnas.1002401107 PubMed PMC
Komaki K., Takano T., Sato Y., Asada A., Ikeda S., Yamada K., Wei R., Huo A., Fukuchi A., Saito T., Ando K., Murayama S., Araki W., Kametani F., Hasegawa M., Iwatsubo T., Tomomura M., Fukuda M., Hisanaga S. I. (2022). Lemur tail kinase 1 (LMTK1) regulates the endosomal localization of β-secretase BACE1. Journal of Biochemistry, 170(6), 729–738. https://doi.org/10.1093/jb/mvab094 PubMed
Laflamme C., Assaker G., Ramel D., Dorn J. F., She D., Maddox P. S., Emery G. (2012). Evi5 promotes collective cell migration through its Rab-GAP activity. Journal of Cell Biology, 198(1), 57–67. https://doi.org/10.1083/jcb.201112114 PubMed PMC
Lamb C. A., Nühlen S., Judith D., Frith D., Snijders A. P., Behrends C., Tooze S. A. (2016). TBC1D14 Regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO Journal, 35(3), 281–301. https://doi.org/10.15252/embj.201592695 PubMed PMC
Lamers I. Reijnders M. Venselaar H. Kraus A. Study DDD Jansen S. de Vries B. Houge G. Gradek G. A. Seo J. Choi M. Chae J. H. van der Burgt I. Pfundt R. Letteboer S. van Beersum S. Dusseljee S. Brunner H. G. Doherty D., … Roepman R. (2017). Recurrent De Novo mutations disturbing the GTP/GDP binding pocket of RAB11B cause intellectual disability and a distinctive brain phenotype. American Journal of Human Genetics, 101(5), 824–832. https://doi.org/10.1016/j.ajhg.2017.09.015 PubMed PMC
Lapierre L. A., Avant K. M., Caldwell C. M., Oztan A., Apodaca G., Knowles B. C., Roland J. T., Ducharme N. A., Goldenring J. R. (2012). Phosphorylation of Rab11-FIP2 regulates polarity in MDCK cells. Molecular Biology of the Cell, 23(12), 2302–2318. https://doi.org/10.1091/mbc.E11-08-0681 PubMed PMC
Lapierre L. A., Dorn M. C., Zimmerman C. F., Navarre J., Burnette J. O., Goldenring J. R. (2003). Rab11b resides in a vesicular compartment distinct from Rab11a in parietal cells and other epithelial cells. Experimental Cell Research, 290(2), 322–331. https://doi.org/10.1016/s0014-4827(03)00340-9 PubMed
Li D., Kuehn E. W., Prekeris R. (2014). Kinesin-2 mediates apical endosome transport during epithelial lumen formation. Cellular Logistics, 4(1), e28928. https://doi.org/10.4161/cl.28928 PubMed PMC
Li D., Mangan A., Cicchini L., Margolis B., Prekeris R. (2014). FIP5 Phosphorylation during mitosis regulates apical trafficking and lumenogenesis. EMBO Reports, 15(4), 428–437. https://doi.org/10.1002/embr.201338128 PubMed PMC
Li H., Li H. F., Felder R. A., Periasamy A., Jose P. A. (2008). Rab4 and Rab11 coordinately regulate the recycling of angiotensin II type I receptor as demonstrated by fluorescence resonance energy transfer microscopy. Journal of Biomedical Optics, 13(3), 031206. https://doi.org/10.1117/1.2943286 PubMed PMC
Li J., Kanekiyo T., Shinohara M., Zhang Y., LaDu M. J., Xu H., Bu G. (2012). Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. Journal of Biological Chemistry, 287(53), 44593–44601. https://doi.org/10.1074/jbc.M112.420224 PubMed PMC
Li X., Sapp E., Chase K., Comer-Tierney L. A., Masso N., Alexander J., Reeves P., Kegel K. B., Valencia A., Esteves M., Aronin N., Difiglia M. (2009). Disruption of Rab11 activity in a knock-in mouse model of Huntington’s disease. Neurobiology of Disease, 36(2), 374–383. https://doi.org/10.1016/j.nbd.2009.08.003 PubMed PMC
Li X., Sapp E., Valencia A., Kegel K. B., Qin Z. H., Alexander J., Masso N., Reeves P., Ritch J. J., Zeitlin S., Aronin N., Difiglia M. (2008). A function of huntingtin in guanine nucleotide exchange on Rab11. Neuroreport, 19(16), 1643–1647. https://doi.org/10.1097/WNR.0b013e328315cd4c PubMed
Li X., Standley C., Sapp E., Valencia A., Qin Z. H., Kegel K. B., Yoder J., Comer-Tierney L. A., Esteves M., Chase K., Alexander J., Masso N., Sobin L., Bellve K., Tuft R., Lifshitz L., Fogarty K., Aronin N., DiFiglia M. (2009). Mutant huntingtin impairs vesicle formation from recycling endosomes by interfering with Rab11 activity. Molecular and Cellular Biology, 29(22), 6106–6116. https://doi.org/10.1128/MCB.00420-09 PubMed PMC
Li X., Valencia A., McClory H., Sapp E., Kegel K. B., & Difiglia M. (2012). Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington’s disease mice. Biochemical and Biophysical Research Communications, 421(4), 727–730. https://doi.org/10.1016/j.bbrc.2012.04.070 PubMed
Li X., Valencia A., Sapp E., Masso N., Alexander J., Reeves P., Kegel K. B., Aronin N., Difiglia M. (2010). Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington’s disease. Journal of Neuroscience, 30(13), 4552–4561. https://doi.org/10.1523/JNEUROSCI.5865-09.2010 PubMed PMC
Lin T., Kao H. H., Chou C. H., Chou C. Y., Liao Y. C., Lee H. H. (2020). Rab11 activation by Ik2 kinase is required for dendrite pruning in drosophila sensory neurons. PLoS Genetics, 16(2), e1008626. https://doi.org/10.1371/journal.pgen.1008626 PubMed PMC
Lindsay A. J., Hendrick A. G., Cantalupo G., Senic-Matuglia F., Goud B., Bucci C., McCaffrey M. W. (2002). Rab coupling protein (RCP), a novel Rab4 and Rab11 effector protein. Journal of Biological Chemistry, 277(14), 12190–12199. https://doi.org/10.1074/jbc.M108665200 PubMed
Lindsay A. J., McCaffrey M. W. (2002). Rab11-FIP2 functions in transferrin recycling and associates with endosomal membranes via its COOH-terminal domain. Journal of Biological Chemistry, 277(30), 27193–27199. https://doi.org/10.1074/jbc.M200757200 PubMed
Lindsay A. J., McCaffrey M. W. (2004). The C2 domains of the class I Rab11 family of interacting proteins target recycling vesicles to the plasma membrane. Journal of Cell Science, 117(Pt19), 4365–4375. https://doi.org/10.1242/jcs.01280 PubMed
Liu J., Zhang J. P., Shi M., Quinn T., Bradner J., Beyer R., Chen S., Zhang J. (2009). Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. Journal of Neuroscience, 29(5), 1480–1485. https://doi.org/10.1523/JNEUROSCI.6202-08.2009 PubMed PMC
Lock J. G., Stow J. L. (2005). Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Molecular Biology of the Cell, 16(4), 1744–1755. https://doi.org/10.1091/mbc.e04-10-0867 PubMed PMC
Longatti A., Lamb C. A., Razi M., Yoshimura S., Barr F. A., Tooze S. A. (2012). TBC1D14 Regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. Journal of Cell Biology, 197(5), 659–675. https://doi.org/10.1083/jcb.201111079 PubMed PMC
Luiro K., Yliannala K., Ahtiainen L., Maunu H., Järvelä I., Kyttälä A., Jalanko A. (2004). Interconnections of CLN3, Hook1 and Rab proteins link batten disease to defects in the endocytic pathway. Human Molecular Genetics, 13(23), 3017–3027. https://doi.org/10.1093/hmg/ddh321 PubMed
Machner M. P., Isberg R. R. (2007). A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science, 318(5852), 974–977. https://doi: 10.1126/science.1149121 PubMed
Maekawa T., Sasaoka T., Azuma S., Ichikawa T., Melrose H. L., Farrer M. J., Obata F. (2016). Leucine-rich repeat kinase 2 (LRRK2) regulates α-synuclein clearance in microglia. BMC Neuroscience, 17(1), 77. https://doi.org/10.1186/s12868-016-0315-2 PubMed PMC
Mammoto A., Ohtsuka T., Hotta I., Sasaki T., Takai Y. (1999). Rab11BP/rabphilin-11, a downstream target of rab11 small G protein implicated in vesicle recycling. Journal of Biological Chemistry, 274)(36), 25517–25524. https://doi.org/10.1074/jbc.274.36.25517 PubMed
Manderson A. P., Kay J. G., Hammond L. A., Brown D. L., Stow J. L. (2007). Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha. Journal of Cell Biology, 178(1), 57–69. https://doi.org/10.1083/jcb.200612131 PubMed PMC
Marie N., Lindsay A. J., McCaffrey M. W. (2005). Rab coupling protein is selectively degraded by calpain in a Ca2+-dependent manner. Biochemical Journal, 389(Pt 1), 223–231. https://doi.org/10.1042/BJ20042116 PubMed PMC
Martin-Negrier M. L., Charron G., Bloch B. (2006). Receptor recycling mediates plasma membrane recovery of dopamine D1 receptors in dendrites and axons after agonist-induced endocytosis in primary cultures of striatal neurons. Synapse, 60(3), 194–204. https://doi.org/10.1002/syn.20296 PubMed
Martin-Peña A., Ferrus A. (2020). CCB Is involved in actin-based axonal transport of selected synaptic proteins. Journal of Neuroscience, 40(3), 542–556. https://doi.org/10.1523/JNEUROSCI.0915-18.2019 PubMed PMC
Mashukova A., Spehr M., Hatt H., Neuhaus E. M. (2006). Beta-arrestin2-mediated internalization of mammalian odorant receptors. Journal of Neuroscience, 26(39), 9902–9912. https://doi.org/10.1523/JNEUROSCI.2897-06.2006 PubMed PMC
Massignan T., Biasini E., Lauranzano E., Veglianese P., Pignataro M., Fioriti L., Harris D. A., Salmona M., Chiesa R., Bonetto V. (2010). Mutant prion protein expression is associated with an alteration of the rab GDP dissociation inhibitor alpha (GDI)/Rab11 pathway. Molecular & Cellular Proteomics, 9(4), 611–622. https://doi.org/10.1074/mcp.M900271-MCP200 PubMed PMC
Matthies H. J., Moore J. L., Saunders C., Matthies D. S., Lapierre L. A., Goldenring J. R., Blakely R. D., Galli A. (2010). Rab11 supports amphetamine-stimulated norepinephrine transporter trafficking. Journal of Neuroscience, 30(23), 7863–7877. https://doi.org/10.1523/JNEUROSCI.4574-09.2010 PubMed PMC
Maxfield F. R., McGraw T. E. (2004). Endocytic recycling. Nature Reviews, 5(2), 121–132. https://doi.org/10.1038/nrm1315 PubMed
McClory H., Williams D., Sapp E., Gatune L. W., Wang P., DiFiglia M., Li X. (2014). Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice. Acta Neuropathologica Communications, 2, 179. https://doi.org/10.1186/s40478-014-0178-7 PubMed PMC
Mir A. Kaufman L. Noor A. Motazacker M. M. Jamil T. Azam M. Kahrizi K. Rafiq M. A. Weksberg R. Nasr T. Naeem F. Tzschach A. Kuss A. W. Ishak G. E. Doherty D. Ropers H. H. Barkovich A. J. Najmabadi H. Ayub M., … Vincent J. B. (2009). Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-beta-binding protein, in nonsyndromic autosomal-recessive mental retardation. American Journal of Human Genetics, 85(6), 909–915. https://doi.org/10.1016/j.ajhg.2009.11.009 PubMed PMC
Miserey-Lenkei S., Waharte F., Boulet A., Cuif M. H., Tenza D., El Marjou A., Raposo G., Salamero J., Héliot L., Goud B., Monier S. (2007). Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic (Copenhagen, Denmark), 8(10), 1385–1403. https://doi.org/10.1111/j.1600-0854.2007.00612.x PubMed
Mitchell H., Choudhury A., Pagano R. E., Leof E. B. (2004). Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Molecular Biology of the Cell, 15(9), 4166–4178. https://doi.org/10.1091/mbc.e04-03-0245 PubMed PMC
Mitra J., Hegde P. M., Hegde M. L. (2019). Loss of endosomal recycling factor RAB11 coupled with complex regulation of MAPK/ERK/AKT signaling in postmortem spinal cord specimens of sporadic amyotrophic lateral sclerosis patients. Molecular Brain, 12(1), 55. https://doi.org/10.1186/s13041-019-0475-y PubMed PMC
Mochida G. H., Mahajnah M., Hill A. D., Basel-Vanagaite L., Gleason D., Hill R. S., Bodell A., Crosier M., Straussberg R., Walsh C. A. (2009). A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. American Journal of Human Genetics, 85(6), 897–902. https://doi.org/10.1016/j.ajhg.2009.10.027 PubMed PMC
Moore R. H., Millman E. E., Alpizar-Foster E., Dai W., Knoll B. J. (2004). Rab11 regulates the recycling and lysosome targeting of beta2-adrenergic receptors. Journal of Cell Science, 117(Pt 15), 3107–3117. https://doi.org/10.1242/jcs.01168 PubMed
Moriwaki Y., Ohno Y., Ishii T., Takamura Y., Kita Y., Watabe K., Sango K., Tsuji S., Misawa H. (2018). SIMPLE Binds specifically to PI4P through SIMPLE-like domain and participates in protein trafficking in the trans-Golgi network and/or recycling endosomes. PLoS One, 13(6), e0199829. https://doi.org/10.1371/journal.pone.0199829 PubMed PMC
Mortreux J., Busa T., Germain D. P., Nadeau G., Puechberty J., Coubes C., Gatinois V., Cacciagli P., Duffourd Y., Pinard J. M., Tevissen H., Villard L., Sanlaville D., Philip N., Missirian C. (2018). The role of CNVs in the etiology of rare autosomal recessive disorders: The example of TRAPPC9-associated intellectual disability. European Journal of Human Genetics, 26(1), 143–148. https://doi.org/10.1038/s41431-017-0018-x PubMed PMC
Morvan J., Köchl R., Watson R., Collinson L. M., Jefferies H. B., Tooze S. A. (2009). In vitro reconstitution of fusion between immature autophagosomes and endosomes. Autophagy, 5(5), 676–689. ttps://doi.org/10.4161/auto.5.5.8378 PubMed
Moya-Alvarado G., Gonzalez A., Stuardo N., Bronfman F. C. (2018). Brain-Derived neurotrophic factor (BDNF) regulates Rab5-positive early endosomes in hippocampal neurons to induce dendritic branching. Frontiers in Cellular Neuroscience, 12, 493. https://doi.org/10.3389/fncel.2018.00493 PubMed PMC
Muto A., Arai K., Watanabe S. (2006). Rab11-FIP4 is predominantly expressed in neural tissues and involved in proliferation as well as in differentiation during zebrafish retinal development. Developmental Biology, 292(1), 90–102. https://doi.org/10.1016/j.ydbio.2005.12.050 PubMed
Nam K. T., Lee H. J., Smith J. J., Lapierre L. A., Kamath V. P., Chen X., Aronow B. J., Yeatman T. J., Bhartur S. G., Calhoun B. C., Condie B., Manley N. R., Beauchamp R. D., Coffey R. J., Goldenring J. R. (2010). Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. Journal of Clinical Investigation, 120(3), 840–849. https://doi.org/10.1172/JCI40728 PubMed PMC
Nayak R. C., Keshava S., Esmon C. T., Pendurthi U. R., Rao L. V. (2013). Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa. PLoS One, 8(3), e59304. https://doi: 10.1371/journal.pone.0059304 PubMed PMC
Nedvetsky P. I., Stefan E., Frische S., Santamaria K., Wiesner B., Valenti G., Hammer J. A., 3rd, Nielsen S., Goldenring J. R., Rosenthal W., Klussmann E. (2007). A role of myosin vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic, 8(2), 110–123. https://doi.org/10.1111/j.1600-0854.2006.00508.x PubMed
Nishino H., Saito T., Wei R., Takano T., Tsutsumi K., Taniguchi M., Ando K., Tomomura M., Fukuda M., Hisanaga S. I. (2019). The LMTK1-TBC1D9B-Rab11A cascade regulates dendritic spine formation via endosome trafficking. Journal of Neuroscience, 39(48), 9491–9502. https://doi.org/10.1523/JNEUROSCI.3209-18.2019 PubMed PMC
Núñez E., Pérez-Siles G., Rodenstein L., Alonso-Torres P., Zafra F., Jiménez E., Aragón C., López-Corcuera B. (2009). Subcellular localization of the neuronal glycine transporter GLYT2 in brainstem. Traffic, 10(7), 829–843. https://doi.org/10.1111/j.1600-0854.2009.00911.x PubMed
O’Brien C. E., Bonanno L., Zhang H., Wyss-Coray T. (2015). Beclin 1 regulates neuronal transforming growth factor-β signaling by mediating recycling of the type I receptor ALK5. Molecular Neurodegeneration, 10, 69. https://doi.org/10.1186/s13024-015-0065-0 PubMed PMC
Oehlke O., Martin H. W., Osterberg N., Roussa E. (2011). Rab11b and its effector Rip11 regulate the acidosis-induced traffic of V-ATPase in salivary ducts. Journal of Cellular Physiology, 226(3), 638–651. https://doi.org/10.1002/jcp.22388 PubMed
Oguchi M. E., Noguchi K., Fukuda M. (2017). TBC1D12 Is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells. PLoS One, 12(4), e0174883. https://doi.org/10.1371/journal.pone.0174883 PubMed PMC
O’Reilly M. K., Tian H., Paulson J. C. (2011). CD22 Is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells. Journal of Immunology, 186(3), 1554–1563. https://doi.org/10.4049/jimmunol.1003005 PubMed PMC
Otsuka Y., Satoh T., Nakayama N., Inaba R., Yamashita H., Satoh A. K. (2019). Parcas is the predominant Rab11-GEF for rhodopsin transport in Drosophila photoreceptors. Journal of Cell Science, 132(15), jcs231431. https://doi.org/10.1242/jcs.231431 PubMed
Palmieri D., Bouadis A., Ronchetti R., Merino M. J., Steeg P. S. (2006). Rab11a differentially modulates epidermal growth factor-induced proliferation and motility in immortal breast cells. Breast Cancer Research and Treatment, 100(2), 127–137. https://doi.org/10.1007/s10549-006-9244-6 PubMed
Pan X., Eathiraj S., Munson M., Lambright D. G. (2006). TBC-domain GAPs for rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature, 442(7100), 303–306. https://doi.org/10.1038/nature04847 PubMed
Park M. (2018). AMPA Receptor trafficking for postsynaptic potentiation. Frontiers in Cellular Neuroscience, 12, 361. https://doi: 10.3389/fncel.2018.00361 PubMed PMC
Park M., Penick E. C., Edwards J. G., Kauer J. A., Ehlers M. D. (2004). Recycling endosomes supply AMPA receptors for LTP. Science, 305(5692), 1972–1975. https://doi: 10.1126/science.1102026 PubMed
Parmar H. B., Duncan R. (2016). A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1-dependent Golgi-plasma membrane trafficking. Molecular Biology of the Cell, 27(8), 1320–1331. https://doi.org/10.1091/mbc.E15-12-0845 PubMed PMC
Pasqualato S., Senic-Matuglia F., Renault L., Goud B., Salamero J., Cherfils J. (2004). The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. Journal of Biological Chemistry, 279(12), 11480–11488. https://doi.org/10.1074/jbc.M310558200 PubMed
Pereira-Leal J. B., Seabra M. C. (2000). The mammalian rab family of small GTPases: Definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. Journal of Molecular Biology, 301(4), 1077–1087. https://doi.org/10.1006/jmbi.2000.4010 PubMed
Perez Bay A. E., Schreiner R., Benedicto I., Paz Marzolo M., Banfelder J., Weinstein A. M., & Rodriguez-Boulan E., J. (2016). The fast-recycling receptor megalin defines the apical recycling pathway of epithelial cells. Nature Communications, 7, 11550. https://doi.org/10.1038/ncomms11550 PubMed PMC
Poehler A. M., Xiang W., Spitzer P., May V. E., Meixner H., Rockenstein E., Chutna O., Outeiro T. F., Winkler J., Masliah E., Klucken J. (2014). Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy, 10(12), 2171–2192. https://doi.org/10.4161/auto.36436 PubMed PMC
Powelka A. M., Sun J., Li J., Gao M., Shaw L. M., Sonnenberg A., Hsu V. W. (2004). Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic, 5(1), 20–36. https://doi:10.1111/j.1600-0854.2004.00150.x PubMed
Power D, Srinivasan S., Gunawardena S. (2012). In-vivo evidence for the disruption of Rab11 vesicle transport by loss of huntingtin. Neuroreport, 23(16), 970–977. https://doi.org/10.1097/WNR.0b013e328359d990 PubMed
Prekeris R., Klumperman J., Scheller R. H. (2000). A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Molecular Cell, 6(6), 1437–1448. https://doi.org/10.1016/s1097-2765(00)00140-4 PubMed
Puri C., Vicinanza M., Ashkenazi A., Gratian M. J., Zhang Q., Bento C. F., Renna M., Menzies F. M., Rubinsztein D. C. (2018). The RAB11A-positive compartment is a primary platform for autophagosome assembly mediated by WIPI2 recognition of PI3P-RAB11A. Developmental Cell, 45(1), 114–131.e8. https://doi.org/10.1016/j.devcel.2018.03.008 PubMed PMC
Qi X., Kaneda M., Chen J., Geitmann A., Zheng H. (2011). A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity. Plant Journal, 68(2), 234–248. https://doi.org/10.1111/j.1365-313X.2011.04681.x PubMed
Rai P., Roy J. K. (2022). Rab11 regulates mitophagy signaling pathway of parkin and Pink1 in the drosophila model of Parkinson’s disease. Biochemical and Biophysical Research Communications, 626, 175–186. https://doi.org/10.1016/j.bbrc.2022.08.027 PubMed
Rathan-Kumar S., Roland J. T., Momoh M., Goldstein A., Lapierre L. A., Manning E., Mitchell L., Norman J., Kaji I., Goldenring J. R. (2022). Rab11FIP1-deficient mice develop spontaneous inflammation and show increased susceptibility to colon damage. American Journal of Physiology-Gastrointestinal and Liver Physiology, 323(3), G239–G254. https://doi.org/10.1152/ajpgi.00042.2022 PubMed PMC
Reefman E., Kay J. G., Wood S. M., Offenhäuser C., Brown D. L., Roy S., Stanley A. C., Low P. C., Manderson A. P., Stow J. L. (2010). Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. Journal of Immunology, 184(9), 4852–4862. https://doi.org/10.4049/jimmunol.0803954 PubMed
Richards P., Didszun C., Campesan S., Simpson A., Horley B., Young K. W., Glynn P., Cain K., Kyriacou C. P., Giorgini F., Nicotera P. (2011). Dendritic spine loss and neurodegeneration is rescued by Rab11 in models of Huntington’s disease. Cell Death and Differentiation, 18(2), 191–200. https://doi.org/10.1038/cdd.2010.127 PubMed PMC
Rind H. B., Butowt R., von Bartheld C. S. (2005). Synaptic targeting of retrogradely transported trophic factors in motoneurons: Comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin. Journal of Beuroscience, 25(3), 539–549. https://doi.org/10.1523/JNEUROSCI.4322-04.2005 PubMed PMC
Rivero-Ríos P., Romo-Lozano M., Madero-Pérez J., Thomas A. P., Biosa A., Greggio E., Hilfiker S. (2019). The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. Journal of Biological Chemistry, 294(13) 4738–4758. https://doi.org/10.1074/jbc.RA118.005008 PubMed PMC
Robinett C. C., Giansanti M. G., Gatti M., Fuller M. T. (2009). TRAPPII Is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of drosophila. Journal of Cell Science, 122(Pt 24), 4526–4534. https://doi.org/10.1242/jcs.054536 PubMed PMC
Roland J. T., Lapierre L. A., Goldenring J. R. (2009). Alternative splicing in class V myosins determines association with Rab10. Journal of Biological Chemistry, 284(2), 1213–1223. https://doi.org/10.1074/jbc.M805957200 PubMed PMC
Roosterman D., Cottrell G. S., Schmidlin F., Steinhoff M., Bunnett N. W. (2004). Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and rab GTPases. Journal of Biological Chemistry, 279(29), 30670–30679. https://doi.org/10.1074/jbc.M402479200 PubMed
Rowe R. K., Suszko J. W., Pekosz A. (2008). Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology, 382(2), 239–249. https://doi.org/10.1016/j.virol.2008.09.021 PubMed PMC
Sakaguchi A., Sato M., Sato K., Gengyo-Ando K., Yorimitsu T., Nakai J., Hara T., Sato K., Sato K. (2015). REI-1 is a guanine nucleotide exchange factor regulating RAB-11 localization and function in C. elegans embryos. Developmental Cell, 35(2), 211–221. https://doi.org/10.1016/j.devcel.2015.09.013 PubMed
Sakane H., Yamamoto H., Kikuchi A. (2010). LRP6 Is internalized by Dkk1 to suppress its phosphorylation in the lipid raft and is recycled for reuse. Journal of Cell Science, 123(Pt 3), 360–368. https://doi.org/10.1242/jcs.058008 PubMed
Sampo B., Kaech S., Kunz S., Banker G. (2003). Two distinct mechanisms target membrane proteins to the axonal surface. Neuron, 37(4), 611–624. https://doi.org/10.1016/s0896-6273(03)00058-8 PubMed
Sato K., Sakaguchi A., Sato M. (2016). REI/SH3BP5 protein family: New GEFs for Rab11. Cell Cycle, 15(6), 767–769. https://doi.org/10.1080/15384101.2015.1137710 PubMed PMC
Schafer J. C., Baetz N. W., Lapierre L. A., McRae R. E., Roland J. T., Goldenring J. R. (2014). Rab11-FIP2 interaction with MYO5B regulates movement of Rab11a-containing recycling vesicles. Traffic, 15(3), 292–308. https://doi.org/10.1111/tra.12146 PubMed PMC
Schafer J. C., McRae R. E., Manning E. H., Lapierre L. A., Goldenring J. R. (2016). Rab11-FIP1A regulates early trafficking into the recycling endosomes. Experimental Cell Research, 340(2), 259–273. https://doi:10.1016/j.yexcr.2016.01.003 PubMed PMC
Schürmann B., Bermingham D. P., Kopeikina K. J., Myczek K., Yoon S., Horan K. E., Kelly C. J., Martin-de-Saavedra M. D., Forrest M. P., Fawcett-Patel J. M., Smith K. R., Gao R., Bach A., Burette A. C., Rappoport J. Z., Weinberg R. J., Martina M., Penzes P. (2020). A novel role for the late-onset Alzheimer’s disease (LOAD)-associated protein Bin1 in regulating postsynaptic trafficking and glutamatergic signaling. Molecular Psychiatry, 25(9), 2000–2016. https://doi.org/10.1038/s41380-019-0407-3 PubMed PMC
Schwenk B. M. Hartmann H. Serdaroglu A. Schludi M. H. Hornburg D. Meissner F. Orozco D. Colombo A. Tahirovic S. Michaelsen M. Schreiber F. Haupt S. Peitz M. Brüstle O. Küpper C. Klopstock T. Otto M. Ludolph A. C. Arzberger T., … Edbauer D. (2016). TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO Journal, 35(21), 2350–2370. https://doi.org/10.15252/embj.201694221 PubMed PMC
Schwenk R. W., Luiken J. J., Eckel J. (2007). FIP2 And Rip11 specify Rab11a-mediated cellular distribution of GLUT4 and FAT/CD36 in H9c2-hIR cells. Biochemical and Biophysical Research Communications, 363(1), 119–125. https://doi.org/10.1016/j.bbrc.2007.08.111 PubMed
Sharma M., Redpath G. M., Williams M. J., McCormick S. P. (2017). Recycling of apolipoprotein(a) after PlgRKT-mediated endocytosis of lipoprotein(a). Circulation Research, 120(7), 1091–1102. https://doi.org/10.1161/CIRCRESAHA.116.310272 PubMed
Shirane M., Nakayama K. I. (2006). Protrudin induces neurite formation by directional membrane trafficking. Science, 314(5800). 818–821. https://doi.org/10.1126/science.1134027 PubMed
Silvis M. R., Bertrand C. A., Ameen N., Golin-Bisello F., Butterworth M. B., Frizzell R. A., Bradbury N. A. (2009). Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Molecular Biology of the Cell, 20(8), 2337–2350. https://doi.org/10.1091/mbc.e08-01-0084 PubMed PMC
Simon G. C., Prekeris R. (2008). Mechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis. Biochemical Society Transactions, 36(Pt 3), 391–394. https://doi.org/10.1042/BST0360391 PubMed PMC
Simon G. C., Schonteich E., Wu C. C., Piekny A., Ekiert D., Yu X., Gould G. W., Glotzer M., Prekeris R. (2008). Sequential cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO Journal, 27(13), 1791–1803. https://doi.org/10.1038/emboj.2008.112 PubMed PMC
Siri S. O., Rozés-Salvador V., de la Villarmois E. A., Ghersi M. S., Quassollo G., Pérez M. F., Conde C. (2020). Decrease of Rab11 prevents the correct dendritic arborization, synaptic plasticity and spatial memory formation. Biochimica et Biophysica Acta. Molecular Cell Research, 1867(9), 118735. https://doi.org/10.1016/j.bbamcr.2020.118735 PubMed
Sirokmány G., Szidonya L., Káldi K., Gáborik Z., Ligeti E., Geiszt M. (2006). Sec14 homology domain targets p50RhoGAP to endosomes and provides a link between rab and rho GTPases. Journal of Biological Chemistry, 281(9), 6096–6105. https://doi.org/10.1074/jbc.M510619200 PubMed
Sivars U., Aivazian D., Pfeffer S. R. (2003). Yip3 catalyses the dissociation of endosomal rab-GDI complexes. Nature, 425(6960), 856–859. https://doi.org/10.1038/nature02057 PubMed
Sobajima T., Yoshimura S., Iwano T., Kunii M., Watanabe M., Atik N., Mushiake S., Morii E., Koyama Y., Miyoshi E., Harada A. (2014). Rab11a is required for apical protein localisation in the intestine. Biology Open, 4(1), 86–94. https://doi.org/10.1242/bio.20148532 PubMed PMC
Sobajima T., Yoshimura S. I., Maeda T., Miyata H., Miyoshi E., Harada A. (2018). The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution. Journal of Cell Biology, 217(5), 1777–1796. https://doi:10.1083/jcb.201709123 PubMed PMC
Solinger J. A., Rashid H. O., Prescianotto-Baschong C., Spang A. (2020). FERARI Is required for Rab11-dependent endocytic recycling. Nature Cell Biology, 22(2), 213–224. https://doi.org/10.1038/s41556-019-0456-5 PubMed PMC
Steinert J. R., Campesan S., Richards P., Kyriacou C. P., Forsythe I. D., Giorgini F. (2012). Rab11 rescues synaptic dysfunction and behavioural deficits in a drosophila model of Huntington’s disease. Human Molecular Genetics, 21(13), 2912–2922. https://doi.org/10.1093/hmg/dds117 PubMed PMC
Stendel C., Roos A., Kleine H., Arnaud E., Ozçelik M., Sidiropoulos P. N., Zenker J., Schüpfer F., Lehmann U., Sobota R. M., Litchfield D. W., Lüscher B., Chrast R., Suter U., Senderek J. (2010). SH3TC2, A protein mutant in charcot-marie-tooth neuropathy, links peripheral nerve myelination to endosomal recycling. Brain, 133(Pt 8), 2462–2474. https://doi.org/10.1093/brain/awq168 PubMed
Stenmark H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews, 10(8). 513–525. https://doi.org/10.1038/nrm2728 PubMed
Su T., Bryant D. M., Luton F., Vergés M., Ulrich S. M., Hansen K. C., Datta A., Eastburn D. J., Burlingame A. L., Shokat K. M., Mostov K. E. (2010). A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biology, 12(12), 1143–1153. https://doi.org/10.1038/ncb2118 PubMed PMC
Sugawara K., Shibasaki T., Mizoguchi A., Saito T., Seino S. (2009). Rab11 and its effector Rip11 participate in regulation of insulin granule exocytosis. Genes to Cells, 14(4), 445–456. https://doi.org/10.1111/j.1365-2443.2009.01285.x PubMed
Takano T., Urushibara T., Yoshioka N., Saito T., Fukuda M., Tomomura M., Hisanaga S. (2014). LMTK1 Regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Molecular Biology of the Cell, 25(11), 1755–1768. https://doi.org/10.1091/mbc.E14-01-0675 PubMed PMC
Tang Q., Lento A., Suzuki K., Efe G., Karakasheva T., Long A., Giroux V., Islam M., Wileyto E. P., Klein-Szanto A. J., Nakagawa H., Bass A., Rustgi A. K. (2021). Rab11-FIP1 mediates epithelial-mesenchymal transition and invasion in esophageal cancer. EMBO Reports, 22(2), e48351. https://doi.org/10.15252/embr.201948351 PubMed PMC
Terada K., Horinouchi T., Fujioka Y., Higashi T., Nepal P., Horiguchi M., Karki S., Hatate C., Hoshi A., Harada T., Mai Y., Ohba Y., Miwa S. (2014). Agonist-promoted ubiquitination differentially regulates receptor trafficking of endothelin type A and type B receptors. Journal of Biological Chemistry, 289(51), 35283–35295. https://doi.org/10.1074/jbc.M113.544171 PubMed PMC
Thomas L. L., Fromme J. C. (2016). GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. Journal of Cell Biology, 215(4), 499–513. https://doi.org/10.1083/jcb.201608123 PubMed PMC
Tong M., Chan K. W., Bao J. Y., Wong K. Y., Chen J. N., Kwan P. S., Tang K. H., Fu L., Qin Y. R., Lok S., Guan X. Y., Ma S. (2012). Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Research, 72(22), 6024–6035. https://doi.org/10.1158/0008-5472.CAN-12-1269 PubMed
Tower-Gilchrist C., Lee E., Sztul E. (2011). Endosomal trafficking of the G protein-coupled receptor somatostatin receptor 3. Biochemical and Biophysical Research Communications, 413(4), 555–560. https://doi.org/10.1016/j.bbrc.2011.08.137 PubMed PMC
Tran-Van-Minh A., Dolphin A. C. (2010). The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. Journal of Neuroscience, 30(38), 12856–12867. https://doi.org/10.1523/JNEUROSCI.2700-10.2010 PubMed PMC
Tu K., Li J., Verma V. K., Liu C., Billadeau D. D., Lamprecht G., Xiang X., Guo L., Dhanasekaran R., Roberts L. R., Shah V. H., Kang N. (2015). Vasodilator-stimulated phosphoprotein promotes activation of hepatic stellate cells by regulating Rab11-dependent plasma membrane targeting of transforming growth factor beta receptors. Hepatology, 61(1), 361–374. https://doi.org/10.1002/hep.27251 PubMed PMC
Udayar V., Buggia-Prévot V., Guerreiro R. L., Siegel G., Rambabu N., Soohoo A. L., Ponnusamy M., Siegenthaler B., Bali J., Simons AESG, Ries M., Puthenveedu J., Hardy M. A., Thinakaran J., & Rajendran G., L. (2013). A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of β-amyloid production. Cell Reports, 5(6), 1536–1551. https://doi.org/10.1016/j.celrep.2013.12.005 PubMed PMC
Ullrich O., Reinsch S., Urbé S., Zerial M., Parton R. G. (1996). Rab11 regulates recycling through the pericentriolar recycling endosome. Journal of Cell Biology, 135(4), 913–924. https://doi.org/10.1083/jcb.135.4.913 PubMed PMC
Utley T. J., Ducharme N. A., Varthakavi V., Shepherd B. E., Santangelo P. J., Lindquist M. E., Goldenring J. R., Crowe J. E., Jr (2008). Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10209–10214. https://doi.org/10.1073/pnas.0712144105 PubMed PMC
Uzan-Gafsou S., Bausinger H., Proamer F., Monier S., Lipsker D., Cazenave J. P., Goud B., de la Salle H., Hanau D., Salamero J. (2007). Rab11A controls the biogenesis of birbeck granules by regulating langerin recycling and stability. Molecular Biology of the Cell, 18(8), 3169–3179. https://doi.org/10.1091/mbc.e06-09-0779 PubMed PMC
van de Graaf S. F., Chang Q., Mensenkamp A. R., Hoenderop J. G., Bindels R. J. (2006). Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Molecular and Cellular Biology, 26(1), 303–312. https://doi.org/10.1128/MCB.26.1.303-312.2006 PubMed PMC
Vernoud V., Horton A. C., Yang Z., Nielsen E. (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiology, 131(3), 1191–1208. https://doi.org/10.1104/pp.013052 PubMed PMC
Wallace D. M., Lindsay A. J., Hendrick A. G., McCaffrey M. W. (2002). The novel Rab11-FIP/rip/RCP family of proteins displays extensive homo- and hetero-interacting abilities. Biochemical and Biophysical Research Communications, 292(4), 909–915. https://doi.org/10.1006/bbrc.2002.6736 PubMed
Walsh R. B., Dresselhaus E. C., Becalska A. N., Zunitch M. J., Blanchette C. R., Scalera A. L., Lemos T., Lee S. M., Apiki J., Wang S., Isaac B., Yeh A., Koles K., Rodal A. A. (2021). Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. Journal of Cell Biology, 220(8), e202012034. https://doi.org/10.1083/jcb.202012034 PubMed PMC
Wang J., Lv X., Wu Y., Xu T., Jiao M., Yang R., Li X., Chen M., Yan Y., Chen C., Dong W., Yang W., Zhuo M., Chen T., Luo J., Qiu S. (2018). Postsynaptic RIM1 modulates synaptic function by facilitating membrane delivery of recycling NMDARs in hippocampal neurons. Nature Communications, 9(1), 2267. https://doi.org/10.1038/s41467-018-04672-0 PubMed PMC
Wang X., Weng M., Ke Y., Sapp E., DiFiglia M., Li X. (2020). Kalirin interacts with TRAPP and regulates Rab11 and endosomal recycling. Cells, 9(5), 1132. https://doi.org/10.3390/cells9051132 PubMed PMC
Wang Z., Edwards J. G., Riley N., Provance D. W., Jr, Karcher R., Li X. D., Davison I. G., Ikebe M., Mercer J. A., Kauer J. A., Ehlers M. D. (2008). Myosin vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell, 135(3), 535–548. https://doi.org/10.1016/j.cell.2008.09.057 PubMed PMC
Welsh G. I., Leney S. E., Lloyd-Lewis B., Wherlock M., Lindsay A. J., McCaffrey M. W., Tavaré J. M. (2007). Rip11 is a Rab11- and AS160-RabGAP-binding protein required for insulin-stimulated glucose uptake in adipocytes. Journal of Cell Science, 120(Pt 23), 4197–4208. https://doi.org/10.1242/jcs.007310 PubMed
Welz T., Wellbourne-Wood J., Kerkhoff E. (2014). Orchestration of cell surface proteins by Rab11. Trends in Cell Biology, 24(7), 407–415. https://doi.org/10.1016/j.tcb.2014.02.004 PubMed
Westlake C. J., Baye L. M., Nachury M. V., Wright K. J., Ervin K. E., Phu L., Chalouni C., Beck J. S., Kirkpatrick D. S., Slusarski D. C., Sheffield V. C., Scheller R. H., Jackson P. K. (2011). Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2759–2764. https://doi.org/10.1073/pnas.1018823108 PubMed PMC
White J. A, 2nd, Krzystek T. J., Hoffmar-Glennon H., Thant C., Zimmerman K., Iacobucci G., Vail J., Thurston L., Rahman S. & Gunawardena S. (2020). Excess Rab4 rescues synaptic and behavioral dysfunction caused by defective HTT-Rab4 axonal transport in Huntington’s disease. Acta Neuropathologica Communications, 8(1), 97. https://doi.org/10.1186/s40478-020-00964-z PubMed PMC
Woodruff G., Reyna S. M., Dunlap M., Van Der Kant R., Callender J. A., Young J. E., Roberts E. A. & Goldstein L. S. (2016). Defective transcytosis of APP and lipoproteins in human iPSC-derived neurons with familial Alzheimer’s disease mutations. Cell Reports, 17(3), 759–773. https://doi.org/10.1016/j.celrep.2016.09.034 PubMed PMC
Xiong B., Bayat V., Jaiswal M., Zhang K., Sandoval H., Charng W. L., Li T., David G., Duraine L., Lin Y. Q., Neely G. G., Yamamoto S., Bellen H. J. (2012). Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biology, 10(12), e1001438. https://doi.org/10.1371/journal.pbio.1001438 PubMed PMC
Xu C. L., Wang J. Z., Xia X. P., Pan C. W., Shao X. X., Xia S. L., Yang S. X., Zheng B. (2016). Rab11-FIP2 promotes colorectal cancer migration and invasion by regulating PI3K/AKT/MMP7 signaling pathway. Biochemical and Biophysical Research Communications, 470(2), 397–404. https://doi.org/10.1016/j.bbrc.2016.01.031 PubMed
Yamasaki A., Menon S., Yu S., Barrowman J., Meerloo T., Oorschot V., Klumperman J., Satoh A., Ferro-Novick S. (2009). Mtrs130 is a component of a mammalian TRAPPII complex, a Rab1 GEF that binds to COPI-coated vesicles. Molecular Biology of the Cell, 20(19), 4205–4215. https://doi.org/10.1091/mbc.e09-05-0387 PubMed PMC
Yazaki Y., Hara Y., Tamaki H., Fukaya M., Sakagami H. (2014). Endosomal localization of FIP3/arfophilin-1 and its involvement in dendritic formation of mouse hippocampal neurons. Brain Research, 1557, 55–65. https://doi.org/10.1016/j.brainres.2014.02.018 PubMed
Zhang J., Schulze K. L., Hiesinger P. R., Suyama K., Wang S., Fish M., Acar M., Hoskins R. A., Bellen H. J., Scott M. P. (2007). Thirty-one flavors of drosophila rab proteins. Genetics, 176(2), 1307–1322. https://doi.org/10.1534/genetics.106.066761 PubMed PMC
Zhang X. M., Walsh B., Mitchell C. A., Rowe T. (2005). TBC Domain family, member 15 is a novel mammalian rab GTPase-activating protein with substrate preference for Rab7. Biochemical and Biophysical Research Communications, 335(1), 154–161. https://doi.org/10.1016/j.bbrc.2005.07.070 PubMed
Zhao L., Ji X., Zhang X., Li L., Jin Y., Liu W. (2018). FLCN Is a novel Rab11A-interacting protein that is involved in the Rab11A-mediated recycling transport. Journal of Cell Science, 131(24), jcs218792. https://doi.org/10.1242/jcs.218792 PubMed
Zhao Z. Sagare A. P. Ma Q. Halliday M. R. Kong P. Kisler K. Winkler E. A. Ramanathan A. Kanekiyo T. Bu G. Owens N. C. Rege S. V. Si G. Ahuja A. Zhu D. Miller C. A. Schneider J. A. Maeda M. Maeda T., … Zlokovic B. V. (2015). Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nature Neuroscience, 18(7), 978–987. https://doi.org/10.1038/nn.4025 PubMed PMC