Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects

. 2022 Dec 05 ; 13 (1) : 7496. [epub] 20221205

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36470867

Grantová podpora
Wellcome Trust - United Kingdom
J-0901 Parkinson's UK - United Kingdom
MR/N008324/1 Medical Research Council - United Kingdom

Odkazy

PubMed 36470867
PubMed Central PMC9722930
DOI 10.1038/s41467-022-34732-5
PII: 10.1038/s41467-022-34732-5
Knihovny.cz E-zdroje

Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention.

Center for Alzheimer's and Related Dementias National Institutes of Health Bethesda MD USA

Centre d'Études Avancées en Médecine du Sommeil Hôpital du Sacré Cœur de Montréal Montréal QC Canada

Clinical Neurology Unit Department of Neurosciences University Hospital of Udine Udine Italy

Data Tecnica International Glen Echo MD USA

Department of Biomedical and Neuromotor Sciences Alma Mater Studiorum University of Bologna Bologna Italy

Department of Biomedical Metabolic and Neural Sciences University of Modena and Reggio Emilia Modena Italy

Department of Clinical and Movement Neurosciences University College London Institute of Neurology London UK

Department of Human Genetics McGill University Montréal QC Canada

Department of Medical Sciences and Public Health Sleep Disorder Research Center University of Cagliari Cagliari Italy

Department of Medicine University of Udine Udine Italy

Department of Neurodegenerative Disease UCL Queen Square Institute of Neurology University College London London UK

Department of Neurological Sciences Università Vita Salute San Raffaele Milan Italy

Department of Neurology and Centre of Clinical Neuroscience Charles University 1st Faculty of Medicine and General University Hospital Prague Czech Republic

Department of Neurology and Neurosurgery McGill University Montreal QC Canada

Department of Neurology Antwerp University Hospital Edegem Belgium

Department of Neurology Johns Hopkins University Medical Center Baltimore MD USA

Department of Neurology Mayo Clinic Rochester MN USA

Department of Neurology Oslo University Hospital Oslo Norway

Department of Neurology Philipps University Marburg Germany

Department of Neurology St Dimpna Regional Hospital Geel Belgium

Department of Neurology University Medical Centre Goettingen Goettingen Germany

Department of Neurosciences Biomedicine and Movement Sciences University of Verona Verona Italy

Department of Neurosciences Université de Montréal Montréal QC Canada

Department of Psychiatry Université de Montréal Montréal QC Canada

Department of Psychology Université du Québec à Montréal Montreal QC Canada

EuroMov Digital Health in Motion University of Montpellier IMT Mines Ales Montpellier France

Great Ormond Street Institute of Child Health Genetics and Genomic Medicine University College London London UK

Institute of Sleep Medicine and Neuromuscular Disorders University of Münster Münster Germany

IRCCS Institute of Neurological Sciences of Bologna Bologna Italy

Laboratory for Sleep Disorders St Dimpna Regional Hospital Geel Belgium

Laboratory of Neurogenetics National Institute on Aging National Institutes of Health Bethesda MD USA

Lund University Translational Neurogenetics Unit Department of Experimental Medical Science Lund Sweden

Me Inc Sunnyvale CA USA

National Reference Center for Narcolepsy Sleep Unit Department of Neurology Gui de Chauliac Hospital CHU Montpellier University of Montpellier Institute Neuroscience Montpellier Inserm Montpellier France

Neurodegenerative Diseases Research Unit National Institute of Neurological Disorders and Stroke Bethesda MD USA

NIHR Great Ormond Street Hospital Biomedical Research Centre University College London London UK

Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK

Oxford Parkinson's Disease Centre University of Oxford Oxford UK

Paracelsus Elena Klinik Kassel Germany

Preventive Neurology Unit Wolfson Institute of Preventive Medicine Queen Mary University of London London UK

Sleep and Neurology Unit Beau Soleil Clinic Montpellier France

Sleep disorder Unit Carémeau Hospital University Hospital of Nîmes Nîmes France

Sleep Disorders Clinic Department of Neurology Medical University of Innsbruck Innsbruck Austria

Sleep Disorders Unit Pitié Salpêtrière Hospital APHP Sorbonne Paris Brain Insitute and Sorbonne University Paris France

The Neuro McGill University Montréal QC Canada

University Lille North of France Department of Clinical Neurophysiology and Sleep Center CHU Lille Lille France

Zobrazit více v PubMed

Dauvilliers Y, et al. REM sleep behaviour disorder. Nat. Rev. Dis. Prim. 2018;4:19. doi: 10.1038/s41572-018-0016-5. PubMed DOI

Postuma, R. et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology72, 1296–1300 (2009). PubMed PMC

Postuma RB, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142:744–759. doi: 10.1093/brain/awz030. PubMed DOI PMC

Högl, B., Stefani, A. & Videnovic, A. J. N. R. N. Idiopathic REM sleep behaviour disorder and neurodegeneration—an update. Nat. Rev. Neurol. 14, 40 (2018). PubMed

Vendette M, et al. REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology. 2007;69:1843–1849. doi: 10.1212/01.wnl.0000278114.14096.74. PubMed DOI

Dugger, B. N. et al. Rapid eye movement sleep behavior disorder and subtypes in autopsy‐confirmed dementia with Lewy bodies. Mov. Disord. 27, 72–78 (2012). PubMed PMC

Giannini G, et al. Progression and prognosis in multiple system atrophy presenting with REM behavior disorder. Neurology. 2020;94:e1828–e1834. doi: 10.1212/WNL.0000000000009372. PubMed DOI

Chia, R. et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat. Genet.53, 294–303 (2021). PubMed PMC

Krohn L, et al. Fine‐mapping of SNCA in rapid eye movement sleep behavior disorder and overt Synucleinopathies. Ann. Neurol. 2020;87:584–598. doi: 10.1002/ana.25687. PubMed DOI PMC

Krohn L, et al. Genetic, structural, and functional evidence link TMEM175 to synucleinopathies. Ann. Neurol. 2020;87:139–153. doi: 10.1002/ana.25629. PubMed DOI

Gan‐Or Z, et al. GBA mutations are associated with rapid eye movement sleep behavior disorder. Ann. Clin. Transl. Neurol. 2015;2:941–945. doi: 10.1002/acn3.228. PubMed DOI PMC

Krohn L, et al. GBA variants in REM sleep behavior disorder: a multicenter study. Neurology. 2020;95:e1008–e1016. doi: 10.1212/WNL.0000000000010042. PubMed DOI PMC

Nalls MA, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18:1091–1102. doi: 10.1016/S1474-4422(19)30320-5. PubMed DOI PMC

Guerreiro, R. et al. Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet17, 64–74 (2018). PubMed PMC

Mufti K, et al. Novel associations of BST1 and LAMP3 with REM sleep behavior disorder. Neurology. 2021;96:e1402–e1412. doi: 10.1212/WNL.0000000000011464. PubMed DOI PMC

Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–3557. doi: 10.1093/bioinformatics/btv402. PubMed DOI PMC

Nalls MA, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014;46:989. doi: 10.1038/ng.3043. PubMed DOI PMC

Akbarian S, et al. The psychencode project. Nat. Neurosci. 2015;18:1707–1712. doi: 10.1038/nn.4156. PubMed DOI PMC

van der Wijst MG, et al. Science forum: the single-cell eQTLGen consortium. Elife. 2020;9:e52155. doi: 10.7554/eLife.52155. PubMed DOI PMC

Consortium G. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348:648–660. doi: 10.1126/science.1262110. PubMed DOI PMC

Hawrylycz MJ, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–399. doi: 10.1038/nature11405. PubMed DOI PMC

Bryois J, et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 2022;25:1104–1112. doi: 10.1038/s41593-022-01128-z. PubMed DOI

Consortium G. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–1330. doi: 10.1126/science.aaz1776. PubMed DOI PMC

Gan-Or Z, Dion PA, Rouleau GA. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy. 2015;11:1443–1457. doi: 10.1080/15548627.2015.1067364. PubMed DOI PMC

Martini-Stoica H, Xu Y, Ballabio A, Zheng H. The autophagy–lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 2016;39:221–234. doi: 10.1016/j.tins.2016.02.002. PubMed DOI PMC

Blauwendraat C, et al. Parkinson’s disease age at onset genome‐wide association study: defining heritability, genetic loci, and α‐synuclein mechanisms. Mov. Disord. 2019;34:866–875. doi: 10.1002/mds.27659. PubMed DOI PMC

Chatterjee S, Mudher A. Alzheimer’s disease and type 2 diabetes: a critical assessment of the shared pathological traits. Front. Neurosci. 2018;12:383. doi: 10.3389/fnins.2018.00383. PubMed DOI PMC

Zhu Z, Lin Y, Li X, Driver JA, Liang L. Shared genetic architecture between metabolic traits and Alzheimer’s disease: a large-scale genome-wide cross-trait analysis. Hum. Genet. 2019;138:271–285. doi: 10.1007/s00439-019-01988-9. PubMed DOI PMC

Anang JB, et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology. 2014;83:1253–1260. doi: 10.1212/WNL.0000000000000842. PubMed DOI PMC

Jozwiak, N. et al. REM sleep behavior disorder and cognitive impairment in Parkinson’s disease. Sleep40, zsx101 (2017). PubMed PMC

Gagnon JF, et al. Mild cognitive impairment in rapid eye movement sleep behavior disorder and Parkinson’s disease. Ann. Neurol. 2009;66:39–47. doi: 10.1002/ana.21680. PubMed DOI

Bjørnarå KA, Pihlstrøm L, Dietrichs E, Toft M. Risk variants of the α-synuclein locus and REM sleep behavior disorder in Parkinson’s disease: a genetic association study. BMC Neurol. 2018;18:20. doi: 10.1186/s12883-018-1023-6. PubMed DOI PMC

Gonzalez A, Valeiras M, Sidransky E, Tayebi N. Lysosomal integral membrane protein-2: a new player in lysosome-related pathology. Mol. Genet. Metab. 2014;111:84–91. doi: 10.1016/j.ymgme.2013.12.005. PubMed DOI PMC

Rahayel S, et al. Brain atrophy in Parkinson’s disease with polysomnography-confirmed REM sleep behavior disorder. Sleep. 2019;42:zsz062. doi: 10.1093/sleep/zsz062. PubMed DOI PMC

Simon-Sanchez J, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 2009;41:1308–1312. doi: 10.1038/ng.487. PubMed DOI PMC

Fernández-Santiago R, et al. Absence of LRRK2 mutations in a cohort of patients with idiopathic REM sleep behavior disorder. Neurology. 2016;86:1072–1073. doi: 10.1212/WNL.0000000000002304. PubMed DOI

Gan-Or, Z. et al. Parkinson’s disease genetic loci in rapid eye movement sleep behavior disorder. J. Mol. Neurosci. 56, 617–622 (2015). PubMed

Gan-Or, Z. et al. The dementia-associated APOE ε4 allele is not associated with rapid eye movement sleep behavior disorder. Neurobiol. Aging. 49, 218. E13–E218.e215 (2017). PubMed

Li, J. et al. Full sequencing and haplotype analysis of MAPT in Parkinson’s disease and rapid eye movement sleep behavior disorder. Mov. Disord.33, 1016–1020 (2018). PubMed

Bae E-J, et al. Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nat. Commun. 2014;5:4755. doi: 10.1038/ncomms5755. PubMed DOI PMC

Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. Mol. Neurodegeneration. 2019;14:1–16. doi: 10.1186/s13024-019-0336-2. PubMed DOI PMC

Blauwendraat C, et al. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain. 2020;143:234–248. doi: 10.1093/brain/awz350. PubMed DOI PMC

Inoshita T, Imai Y. Regulation of vesicular trafficking by Parkinson’s disease-associated genes. AIMS Mol. Sci. 2015;2:461–475. doi: 10.3934/molsci.2015.4.461. DOI

Senkevich K, Gan-Or Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics. Parkinsonism Relat. Disord. 2020;73:60–71. doi: 10.1016/j.parkreldis.2019.11.015. PubMed DOI

Behl C. Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol. Sci. 2016;37:672–688. doi: 10.1016/j.tips.2016.04.007. PubMed DOI

Sosero, Y. L. et al. Rare PSAP variants and possible interaction with GBA in REM sleep behavior disorder. J. Parkinson. Dis.12, 333–340 (2021). PubMed

Oji Y, et al. Variants in saposin D domain of prosaposin gene linked to Parkinson’s disease. Brain. 2020;143:1190–1205. doi: 10.1093/brain/awaa064. PubMed DOI

Sosero YL, et al. Lack of evidence for genetic association of saposins A, B, C and D with Parkinson’s disease. Brain. 2020;143:e72–e72. doi: 10.1093/brain/awaa214. PubMed DOI PMC

Gan-Or Z, Liong C, Alcalay RN. GBA-associated Parkinson’s disease and other synucleinopathies. Curr. Neurol. Neurosci. Rep. 2018;18:1–10. doi: 10.1007/s11910-018-0860-4. PubMed DOI

Hu MT. REM sleep behavior disorder (RBD) Neurobiol. Dis. 2020;143:104996. doi: 10.1016/j.nbd.2020.104996. PubMed DOI

Clark L, et al. Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology. 2007;69:1270–1277. doi: 10.1212/01.wnl.0000276989.17578.02. PubMed DOI PMC

Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 2006;38:209–213. doi: 10.1038/ng1706. PubMed DOI

Postuma, R. B. et al. A single‐question screen for rapid eye movement sleep behavior disorder: a multicenter validation study. Mov. Disord. 27, 913–916 (2012). PubMed PMC

Salvi E, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension. 2012;59:248–255. doi: 10.1161/HYPERTENSIONAHA.111.181990. PubMed DOI PMC

Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447:661. doi: 10.1038/nature05911. PubMed DOI PMC

Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181. PubMed DOI PMC

Postuma RB, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424. PubMed DOI

Nomura, T., Inoue, Y., Kagimura, T., Uemura, Y. & Nakashima, K. J. S. m. Utility of the REM sleep behavior disorder screening questionnaire (RBDSQ) in Parkinson’s disease patients. Sleep Med. 12, 711–713 (2011). PubMed

Skorvanek, M., Feketeova, E., Kurtis, M. M., Rusz, J. & Sonka, K. Accuracy of rating scales and clinical measures for screening of rapid eye movement sleep behavior disorder and for predicting conversion to Parkinson’s disease and other synucleinopathies. Front. Neurol.9, 376 (2018). PubMed PMC

Durand, E. Y., Do, C. B., Mountain, J. L. & Macpherson, J. M. Ancestry composition: a novel, efficient pipeline for ancestry deconvolution. Preprint at biorxiv10.1101/010512 (2014).

McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279 (2016). PubMed PMC

Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32:1423–1426. doi: 10.1093/bioinformatics/btw079. PubMed DOI PMC

Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC

Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017;8:1–11. doi: 10.1038/s41467-017-01261-5. PubMed DOI PMC

Yang J, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 2012;44:369–375. doi: 10.1038/ng.2213. PubMed DOI PMC

Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 2020;15:2759–2772. doi: 10.1038/s41596-020-0353-1. PubMed DOI PMC

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience4, 7 (2015). PubMed PMC

Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130–W137. doi: 10.1093/nar/gkx356. PubMed DOI PMC

Giambartolomei C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383. doi: 10.1371/journal.pgen.1004383. PubMed DOI PMC

Võsa, U. et al. Large-scalecis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics53, 1300–1310 (2021). PubMed PMC

Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science362, eaat8464 (2018). PubMed PMC

Wallace C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet. 2020;16:e1008720. doi: 10.1371/journal.pgen.1008720. PubMed DOI PMC

Bryois J, et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat. Genet. 2020;52:482–493. doi: 10.1038/s41588-020-0610-9. PubMed DOI PMC

Skene NG, Grant SG. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 2016;10:16. doi: 10.3389/fnins.2016.00016. PubMed DOI PMC

Zheng J, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–279. doi: 10.1093/bioinformatics/btw613. PubMed DOI PMC

Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47:1236. doi: 10.1038/ng.3406. PubMed DOI PMC

Krohn, L. Genome-wide association study of REM sleep behavior disorder identifies loci with polygenic and brain expression effects. GitHub repository: RBD-GWAS. 10.5281/zenodo.7225250 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...