Adiposity and body fat distribution based on skinfold thicknesses and body circumferences in Czech preschool children, secular changes

. 2024 ; 12 () : e18695. [epub] 20241213

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39686996

BACKGROUND: The long-standing widespread prevalence of obesity includes issues of its evaluation. Nutritional status may be assessed using various tools and methods; among others simple anthropometric measurements are well established. Widely used body mass index (BMI), presents an obstacle of needing to calculate a standard deviation score (SD) for correct use in the child population. As BMI overlooks body composition, it is necessary to evaluate fat and muscle mass with different methods. Established skinfolds and circumferences are used in many variations and equations to accomplish that goal; however, the parameters used in these methods also undergo secular changes. Furthermore, secular changes have been documented in fat mass distribution. The aim of the study is to assess secular changes of skinfolds thickness and body circumferences and evaluate their validity for use in clinical practice and population research. METHODS AND SAMPLE: Our database consisted of a recent (2016-2022) sample with 594 participants (298 males) and a reference sample (from 1990) with 2,910 participants (1,207 males). Both cohorts comprised Czech preschool children, aged 4.00 to 6.99 years. With standard methodology, anthropometric parameters were obtained for 13 skinfolds and eight circumferences, by trained staff. The equations of Slaughter, Durnin and Deurenberg were correspondingly calculated. Statistical evaluation was conducted in the R programming language, using Welch's test, Cohen's d and the Bland-Altman method. RESULTS: Our study found significant increases in skinfold thickness on the abdomen, chest I. and forearm, with high clinical relevance (p ≥ 0.01; d = range from 0.20 to 0.70). Contrastingly, apart from the abdominal area, a decrease of circumferences was observed. The body fat percentage estimation equations were tested for bias in the recent sample in the context of bioimpedance analysis with the Bland-Altman method. All equations are suitable for application in clinical use. DISCUSSION: Documented secular changes in fat mass distribution are only part of a contemporary accelerating trend of obesity prevalence. Our findings support the trend of a decline of circumferences and rise of skinfold thickness in corresponding areas, especially on the limbs, that is evidenced by the trend of latent obesity. The results of the study show the need to complement established diagnostic procedures in childhood obesitology with abdominal and midthigh circumferences and optionally even the maximal circumference of the forearm. These circumferences should always be measured alongside the skinfold thickness of the region. Only in this way can the overall adiposity of an individual with regard to secular changes, including the detection of latent obesity, be objectively evaluated.

Zobrazit více v PubMed

Aarestrup J, Bjerregaard LG, Meyle KD, Pedersen DC, Gjærde LK, Jensen BW, Baker JL. Birthweight, childhood overweight, height and growth and adult cancer risks: a review of studies using the Copenhagen School Health Records Register. International Journal of Obesity. 2020;44(7):1546–1560. doi: 10.1038/s41366-020-0523-9. PubMed DOI

Andaki ACR, Mendes EL, Santos A, Brito CJ, Tinôco ALA, Mota J. Waist circumference percentile curves as a screening tool to predict cardiovascular risk factors and metabolic syndrome risk in Brazilian children. Cadernos De Saude Publica. 2018;34(9):e00105317. doi: 10.1590/0102-311x00105317. PubMed DOI

Andaki ACR, Tinoco ALA, Mendes EL, Junior RA, Hills AP, Amorim PRS. Anthropometry and physical activity level in the prediction of metabolic syndrome in children. Public Health Nutrition. 2014;17(10):2287–2294. doi: 10.1017/S136898001300253X. PubMed DOI PMC

Bláha P. Anthropometry of Czech preschool children aged 3–7 years. Prague, Czech Republic: Institute of Sport Medicine; 1990.

Burlutskaya AV, Tril VE, Polischuk LV, Pokrovskii VM. Dyslipidemia in pediatrician’s practice. Reviews in Cardiovascular Medicine. 2021;22(3):817–834. doi: 10.31083/j.rcm2203088. PubMed DOI

Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Annals of the New York Academy of Sciences. 2018;1411:166–183. doi: 10.1111/nyas.13602. PubMed DOI PMC

Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge; 1988.

de Kroon MLA, Renders CM, van Wouwe JP, van Buuren S, Hirasing RA. The Terneuzen Birth Cohort: BMI change between 2 and 6 years is most predictive of adult cardiometabolic risk. PLOS ONE. 2010;5(11):e13966. doi: 10.1371/journal.pone.0013966. PubMed DOI PMC

de Onis M. Development of a WHO growth reference for school-aged children and adolescents. Bulletin of the World Health Organization. 2007;85(09):660–667. doi: 10.2471/BLT.07.043497. PubMed DOI PMC

de Onis M, Garza C, Victora CG, Onyango AW, Frongillo EA, Martines J. The WHO multicentre growth reference study: planning, study design, and methodology. Food and Nutrition Bulletin. 2004;25(1 Suppl. 1):S15–26. doi: 10.1177/15648265040251S104. PubMed DOI

de Quadros TMB, Gordia AP, Andaki ACR, Mendes EL, Mota J, Silva LR. Utility of anthropometric indicators to screen for clustered cardiometabolic risk factors in children and adolescents. Journal of Pediatric Endocrinology & Metabolism: JPEM. 2019;32(1):49–55. doi: 10.1515/jpem-2018-0217. PubMed DOI

De Santis Filgueiras M, Cecon RS, de Faria ER, de Faria FR, Pereira PF, Ribeiro AQ, Priore SE, de Novaes JF. Agreement of body adiposity index (BAI) and paediatric body adiposity index (BAIp) in determining body fat in Brazilian children and adolescents. Public Health Nutrition. 2019;22(1):132–139. doi: 10.1017/S1368980018002458. PubMed DOI PMC

Dezenberg CV, Nagy TR, Gower BA, Johnson R, Goran MI. Predicting body composition from anthropometry in pre-adolescent children. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity. 1999;23(3):253–259. doi: 10.1038/sj.ijo.0800802. PubMed DOI

Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The British Journal of Nutrition. 1974;32(01):77–97. PubMed

Ek AE, Rössner SM, Hagman E, Marcus C. High prevalence of prediabetes in a Swedish cohort of severely obese children. Pediatric Diabetes. 2015;16(2):117–128. doi: 10.1111/pedi.12136. PubMed DOI

Eston RG, Hawes M, Martin A, Reilly T. Human body composition. In: Eston R, Reilly T, editors. Kinanthropometry and Exercise Physiology Laboratory Manual. London: Routledge; 2009. pp. 3–53.

Etchison WC, Bloodgood EA, Minton CP, Thompson NJ, Collins MA, Hunter SC, Dai H. Body mass index and percentage of body fat as indicators for obesity in an adolescent athletic population. Sports Health. 2011;3(3):249–252. doi: 10.1177/1941738111404655. PubMed DOI PMC

Etzel L, Hastings WJ, Hall MA, Heim CM, Meaney MJ, Noll JG, O’Donnell KJ, Pokhvisneva I, Rose EJ, Schreier HMC, Shenk CE, Shalev I. Obesity and accelerated epigenetic aging in a high-risk cohort of children. Scientific Reports. 2022;12(1):8328. doi: 10.1038/s41598-022-11562-5. PubMed DOI PMC

Forte GC, Rodrigues CAS, Mundstock E, Santos TSD, Filho AD, Noal J, Amaral MA, Preto LT, Vendrusculo FM, Mattiello R. Can skinfold thickness equations be substituted for bioimpedance analysis in children? Jornal de Pediatria. 2021;97(1):75–79. doi: 10.1016/j.jped.2019.12.006. PubMed DOI PMC

Hajniš K, Pařízková J, Petrásek R. Development of centrality indices of subcutaneous fat during growth. Collegium Antropologicum. 2003;27:563–571. PubMed

Huang TT, Johnson MS, Figueroa-Colon R, Dwyer JH, Goran MI. Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obesity Research. 2001;9(5):283–289. doi: 10.1038/oby.2001.35. PubMed DOI

Katzmarzyk PT, Barreira TV, Broyles ST, Chaput J-P, Fogelholm M, Hu G, Kuriyan R, Kurpad A, Lambert EV, Maher C, Maia J, Matsudo V, Olds T, Onywera V, Sarmiento OL, Standage M, Tremblay MS, Tudor-Locke C, Zhao P, Church TS. Association between body mass index and body fat in 9–11-year-old children from countries spanning a range of human development. International Journal of Obesity Supplements. 2015;5(S2):S43–46. doi: 10.1038/ijosup.2015.18. PubMed DOI PMC

Kromeyer-Hauschild K. Percentile curves for skinfold thickness in 7- to 14-year-old children and adolescents from Jena, Germany. European Journal of Clinical Nutrition. 2012;66(5):613–621. doi: 10.1038/ejcn.2011.216. PubMed DOI

Leal DB, de Assis MAA, González-Chica DA, da Costa FF, de Andrade DF, Lobo AS. Changes in total and central adiposity and body fat distribution among 7–10-year-old schoolchildren in Brazil. Public Health Nutrition. 2015;18(12):2105–2114. doi: 10.1017/S1368980014002857. PubMed DOI PMC

Lewitt MS, Baker JS. Relationship between abdominal adiposity, cardiovascular fitness, and biomarkers of cardiovascular risk in British adolescents. Journal of Sport and Health Science. 2020;9:634–644. doi: 10.1016/j.jshs.2019.02.004. PubMed DOI PMC

Liem ET, De Lucia RE, L’Abée C, Sauer PJJ, Ong KK, Stolk RP. Measuring abdominal adiposity in 6 to 7-year-old children. European Journal of Clinical Nutrition. 2009;63(7):835–841. doi: 10.1038/ejcn.2008.57. PubMed DOI

Lo K, Wong M, Khalechelvam P, Tam W. Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: a meta-analysis. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity. 2016;17(12):1258–1275. doi: 10.1111/obr.12456. PubMed DOI

Maligie M, Crume T, Scherzinger A, Stamm E, Dabelea D. Adiposity, fat patterning, and the metabolic syndrome among diverse youth: the EPOCH study. The Journal of Pediatrics. 2012;161(5):875–880. doi: 10.1016/j.jpeds.2012.05.003. PubMed DOI PMC

Marrodán Serrano MD, de Espinosa MGá-M, Herráez Á, Alfaro EL, Felipe Bejarano I, Carmenate MM, Prado C, Beatriz Lomaglio D, López-Ejeda N, Martínez A, Mesa MS, Méndez Pérez B, Meléndez JM, Moreno Romero S, Pacheco JL, Vázquez V, Dipierri JE. Subscapular and triceps skinfolds reference values of Hispanic American children and adolescents and their comparison with the reference of Centers for Disease Control and Prevention (CDC) Nutricion Hospitalaria. 2015;32:2862–2873. doi: 10.3305/nh.2015.32.6.9775. PubMed DOI

Martin R, Saller K. Lehrbuch der Anthropologie in systematischer Darstellung, Band l. Stuttgart: Gustav Fischer Verlag; 1957.

Moeng-Mahlangu L, Monyeki MA, Reilly JJ, Kruger HS. Comparison of several prediction equations using skinfold thickness for estimating percentage body fat vs. body fat percentage determined by BIA in 6-8-year-old South African children: the BC-IT study. International Journal of Environmental Research and Public Health. 2022;19(21):14531. doi: 10.3390/ijerph192114531. PubMed DOI PMC

Moreno LA, Fleta J, Mur L, Feja C, Sarría A, Bueno M. Indices of body fat distribution in Spanish children aged 4.0 to 14.9 years. Journal of Pediatric Gastroenterology and Nutrition. 1997;25(2):175–181. doi: 10.1097/00005176-199708000-00008. PubMed DOI

Moreno LA, Fleta J, Mur L, Sarría A, Bueno M. Fat distribution in obese and nonobese children and adolescents. Journal of Pediatric Gastroenterology and Nutrition. 1998;27(2):176–180. doi: 10.1097/00005176-199808000-00009. PubMed DOI

Muhanna RG, Aljuraiban GS, Almadani NK, Alquraishi M, El-Sharkawy MS, Abulmeaty MMA. Value of adding bioelectrical impedance analysis to anthropometric indices in the diagnosis of metabolic syndrome in 10–16 years old schoolgirls. Healthcare (Basel) 2022;10(3):419. doi: 10.3390/healthcare10030419. PubMed DOI PMC

Nagel G, Wabitsch M, Galm C, Berg S, Brandstetter S, Fritz M, Klenk J, Peter R, Prokopchuk D, Steiner R, Stroth S, Wartha O, Weiland SK, Steinacker J. Secular changes of anthropometric measures for the past 30 years in South-West Germany. European Journal of Clinical Nutrition. 2009;63(12):1440–1443. doi: 10.1038/ejcn.2009.86. PubMed DOI

Noradilah MJ, Ang YN, Kamaruddin NA, Deurenberg P, Ismail MN, Poh BK. Assessing body fat of children by skinfold thickness, bioelectrical impedance analysis, and dual-energy x-ray absorptiometry: a validation study among Malay children aged 7 to 11 years. Asia-Pacific Journal of Public Health. 2016;28(5 Suppl.):74S–84S. doi: 10.1177/1010539516641505. PubMed DOI

Penagini F, Leone A, Borsani B, Bosetti A, Dilillo D, Rendo G, Calcaterra V, Bertoli S, Mora S, Battezzati A, Bedogni G, Zuccotti GV. Predictive fat mass equations for children with inflammatory bowel disease. Journal of Pediatric Gastroenterology and Nutrition. 2021;73(4):e98–e104. doi: 10.1097/MPG.0000000000003188. PubMed DOI PMC

Pietrobelli A, Pecoraro L, Ferruzzi A, Heo M, Faith M, Zoller T, Antoniazzi F, Piacentini G, Fearnbach SN, Heymsfield SB. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity living in Verona, Italy: a longitudinal study. Obesity. 2020;28(8):1382–1385. doi: 10.1002/oby.22861. PubMed DOI PMC

Priyanka S, Sandeep J, Gauri K, Gayatri V. Dual-energy x-ray absorptiometry and anthropometry for assessment of nutritional status at diagnosis in children with cancer: a single-center experience from India. South Asian Journal of Cancer. 2022;11(02):164–171. doi: 10.1055/s-0041-1736031. PubMed DOI PMC

Ramírez-Vélez R, López-Cifuentes MF, Correa-Bautista JE, González-Ruíz K, González-Jiménez E, Córdoba-Rodríguez DP, Vivas A, Triana-Reina HR, Schmidt-RioValle J. Triceps and subscapular skinfold thickness percentiles and cut-offs for overweight and obesity in a population-based sample of schoolchildren and adolescents in Bogota, Colombia. Nutrients. 2016;8(10):595. doi: 10.3390/nu8100595. PubMed DOI PMC

Rudnev S, Burns JS, Williams PL, Lee MM, Korrick SA, Denisova T, Dikov Y, Kozupitsa G, Hauser R, Sergeyev O. Comparison of bioimpedance body composition in young adults in the Russian Children’s Study. Clinical Nutrition ESPEN. 2020;35(Suppl. 1):153–161. doi: 10.1016/j.clnesp.2019.10.007. PubMed DOI PMC

Sardinha LB, Santos DA, Silva AM, Grøntved A, Andersen LB, Ekelund U. A comparison between BMI, waist circumference, and waist-to-height ratio for identifying cardio-metabolic risk in children and adolescents. PLOS ONE. 2016;11(2):e0149351. doi: 10.1371/journal.pone.0149351. PubMed DOI PMC

Savva SC, Tornaritis M, Savva ME, Kourides Y, Panagi A, Silikiotou N, Georgiou C, Kafatos A. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity. 2000;24(11):1453–1458. doi: 10.1038/sj.ijo.0801401. PubMed DOI

Sedlak P, Pařízková J, Daniš R, Dvořáková H, Vignerová J. Secular changes of adiposity and motor development in czech preschool children: lifestyle changes in fifty-five year retrospective study. BioMed Research International. 2015;2015(1):1–9. doi: 10.1155/2015/823841. PubMed DOI PMC

Sedlak P, Pařízková J, Procházková L, Cvrčková L, Dvořáková H. Secular changes of adiposity in Czech children aged from 3 to 6 years: latent obesity in preschool age. BioMed Research International. 2017;2017(1):1–9. doi: 10.1155/2017/2478461. PubMed DOI PMC

Sedlak P, Pařízková J, Samešová D, Musálek M, Dvořáková H, Novák J. Secular changes in body build and body composition in Czech preschool children in the context of latent obesity. Children. 2020;8(1):18. doi: 10.3390/children8010018. PubMed DOI PMC

Simmonds M, Burch J, Llewellyn A, Griffiths C, Yang H, Owen C, Duffy S, Woolacott N. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis. Health Technology Assessment. 2015;19(43):1–336. doi: 10.3310/hta19430. PubMed DOI PMC

Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Human Biology. 1988;60:709–723. PubMed

Soylu M, Şensoy N, Doğan İ, Doğan N, Mazıcıoğlu MM, Öztürk A. Four-site skinfolds thickness percentiles of schoolchildren and adolescents in Turkey. Public Health Nutrition. 2021;24(16):5414–5425. doi: 10.1017/S1368980021003323. PubMed DOI PMC

Stavridou A, Kapsali E, Panagouli E, Thirios A, Polychronis K, Bacopoulou F, Psaltopoulou T, Tsolia M, Sergentanis TN, Tsitsika A. Obesity in children and adolescents during COVID-19 pandemic. Children. 2021;8(2):135. doi: 10.3390/children8020135. PubMed DOI PMC

Suder A, Gomula A, Koziel S. Central overweight and obesity in Polish schoolchildren aged 7–18 years: secular changes of waist circumference between 1966 and 2012. European Journal of Pediatrics. 2017;176(7):909–916. doi: 10.1007/s00431-017-2938-4. PubMed DOI

Sun SS, Deng X, Sabo R, Carrico R, Schubert CM, Wan W, Sabo C. Secular trends in body composition for children and young adults: the Fels Longitudinal Study. American Journal of Human Biology: The Official Journal of the Human Biology Council. 2012;24(4):506–514. doi: 10.1002/ajhb.22256. PubMed DOI PMC

Tang HK, Bowe SJ, Nguyen THHD, Dibley MJ. Triceps and subscapular skinfold thickness percentiles of a school-based sample of adolescents in Ho Chi Minh City, Vietnam. European Journal of Clinical Nutrition. 2020;74(10):1483–1487. doi: 10.1038/s41430-020-0626-3. PubMed DOI

The jamovi project jamovi. 2024. https://github.com/jamovi/jamovi https://github.com/jamovi/jamovi

Vanderwall C, Randall Clark R, Eickhoff J, Carrel AL. BMI is a poor predictor of adiposity in young overweight and obese children. BMC Pediatrics. 2017;17:135. doi: 10.1186/s12887-017-0891-z. PubMed DOI PMC

Vážná A, Vignerová J, Brabec M, Novák J, Procházka B, Gabera A, Sedlak P. Influence of COVID-19-related restrictions on the prevalence of overweight and obese Czech children. International Journal of Environmental Research and Public Health. 2022;19(19):11902. doi: 10.3390/ijerph191911902. PubMed DOI PMC

Viani K, Trehan A, Manzoli B, Schoeman J. Assessment of nutritional status in children with cancer: a narrative review. Pediatric Blood & Cancer. 2020;67(S3):e28211. doi: 10.1002/pbc.28211. PubMed DOI

Vignerová J, Bláha P. Investigation of the growth of Czech children and adolescents normal, underweight, overweight. Praha: Státní zdravotní ústav; 2001.

Vignerová J, Riedlová J, Bláha P, Kobzová J, Krejčovsktfytf L, Brabec M, Hrušková M. 6. Celostátní antropologický výzkum dětí a mládeže 2001, Česká republika. Souhrnné výsledky. Praha: PřF UK, SZÚ; 2006.

Wabitsch M, Hauner H, Hertrampf M, Muche R, Hay B, Mayer H, Kratzer W, Debatin K-M, Heinze E. Type II diabetes mellitus and impaired glucose regulation in Caucasian children and adolescents with obesity living in Germany. International Journal of Obesity and Related Metabolic Disorders. 2004;28(2):307–313. doi: 10.1038/sj.ijo.0802555. PubMed DOI

Wang B, Yuan Y, Sun L, Zhang L, Zhang Z, Fu L, Ma J. Optimal cutoff of the abdominal skinfold thickness (AST) to predict hypertension among Chinese children and adolescents. Journal of Human Hypertension. 2022;36(9):860–865. doi: 10.1038/s41371-021-00573-w. PubMed DOI

Weststrate JA, Deurenberg P. Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements. The American Journal of Clinical Nutrition. 1989;50(5):1104–1115. doi: 10.1093/ajcn/50.5.1104. PubMed DOI

World Health Organisation Obesity and overweight. 2024. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Wu AJ, Aris IM, Hivert M-F, Rocchio C, Cocoros NM, Klompas M, Taveras EM. Association of changes in obesity prevalence with the COVID-19 pandemic in youth in Massachusetts. JAMA Pediatrics. 2022;176(2):198. doi: 10.1001/jamapediatrics.2021.5095. PubMed DOI PMC

Yaprak DS, Yalçın B, Pınar AA, Büyükpamukçu M. Assessment of nutritional status in children with cancer: significance of arm anthropometry and serum visceral proteins. Pediatric Blood & Cancer. 2021;68(1):e28752. doi: 10.1002/pbc.28752. PubMed DOI

Żegleń M, Kryst Ł, Kowal M, Sobiecki J, Woronkowicz A. Changes in adiposity and fat tissue distribution among preschool children from Kraków, Poland, from 2008 to 2018. Journal of Biosocial Science. 2022;54(2):333–346. doi: 10.1017/S0021932021000018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...