Maternal Diet Quality and the Health Status of Newborns
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
the Research Infrastructure NanoEnviCZ, LM2018124
Ministry of Education, Youth and Sports of the Czech Republic
the Research Infrastructure EATRIS-CZ, LM2018133
Ministry of Education, Youth and Sports of the Czech Republic
project Pro-NanoEnviCz (Project No. CZ.02.1.01/0.0/0.0/16_013/0001821)
European Union - European Structural and Investments Funds in the frame of Operational Programme Research Development and Education
PubMed
36496701
PubMed Central
PMC9739031
DOI
10.3390/foods11233893
PII: foods11233893
Knihovny.cz E-resources
- Keywords
- 8-isoprostane, DDT, birth weight, maternal diet quality, maternal protein intake, oxidative stress, persistent organic pollutants,
- Publication type
- Journal Article MeSH
The maternal diet during pregnancy affects neonatal health status. The objective of this study was to assess the nutritional quality of the maternal diet, and its contamination by persistent organic pollutants (POPs), in pregnant women living in two areas of the Czech Republic with different levels of air pollution, and subsequently to assess the relationship of these two factors with birth weight and neonatal oxidative stress. To determine the level of oxidative stress, 8-isoprostane concentrations in umbilical cord plasma were measured. The overall nutritional quality of the maternal diet was not optimal. Of the nutritional factors, protein intake proved to be the most significant showing a positive relationship with birth weight, and a negative relationship with the oxidative stress of newborns. Dietary contamination by persistent organic pollutants was low and showed no statistically significant relationship with birth weight. Only one of the 67 analyzed POPs, namely the insecticide dichlorodiphenyltrichloroethane (DDT), showed a statistically significant positive relationship with the level of neonatal oxidative stress.
See more in PubMed
Hales C.N., Barker D.J. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601. doi: 10.1007/BF00400248. PubMed DOI
Poulsen P., Vaag A.A., Kyvik K.O., Møller Jensen D., Beck-Nielsen H. Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia. 1997;40:439–446. doi: 10.1007/s001250050698. PubMed DOI
Simmons R.A. Developmental origins of diabetes: The role of epigenetic mechanisms. Curr. Opin. Endocrinol. Diabetes Obes. 2007;14:13–16. doi: 10.1097/MED.0b013e328013da5b. PubMed DOI
Anway M.D., Cupp A.S., Uzumcu M., Skinner M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–1469. doi: 10.1126/science.1108190. PubMed DOI PMC
Jimenez-Chillaron J.C., Isganaitis E., Charalambous M., Gesta S., Pentinat-Pelegrin T., Faucette R.R., Otis J.P., Chow A., Diaz R., Ferguson-Smith A., et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes. 2009;58:460–468. doi: 10.2337/db08-0490. PubMed DOI PMC
Hanafi M.Y., Saleh M.M., Saad M.I., Abdelkhalek T.M., Kamel M.A. Transgenerational effects of obesity and malnourishment on diabetes risk in F2 generation. Mol. Cell Biochem. 2016;412:269–280. doi: 10.1007/s11010-015-2633-6. PubMed DOI
Aye I.L., Rosario F.J., Powell T.L., Jansson T. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc. Natl. Acad. Sci. USA. 2015;13:12858–12863. doi: 10.1073/pnas.1515484112. PubMed DOI PMC
Cerf M.E., Herrera E. High fat diet administration during specific periods of pregnancy alters maternal fatty acid profiles in the near-term rat. Nutrients. 2016;4:25. doi: 10.3390/nu8010025. PubMed DOI PMC
Rebelato H.J., Esquisatto M.A., de Sousa Righi E.F., Catisti R. Gestational protein restriction alters cell proliferation in rat placenta. J. Mol. Histol. 2016;47:203–211. doi: 10.1007/s10735-016-9660-9. PubMed DOI
DuBois B.N., O’Tierney-Ginn P., Pearson J., Friedman J.E., Thornburg K., Cherala G. Maternal obesity alters feto-placental cytochrome P4501A1 activity. Placenta. 2012;33:1045–1051. doi: 10.1016/j.placenta.2012.09.008. PubMed DOI PMC
Średnicka P., Juszczuk-Kubiak E., Wójcicki M., Akimowicz M., Roszko M.Ł. Probiotics as a biological detoxification tool of food chemical contamination: A review. Food Chem. Toxicol. 2021;153:112306. doi: 10.1016/j.fct.2021.112306. PubMed DOI
Gálvez-Ontiveros Y., Páez S., Monteagudo C., Rivas A. Endocrine disruptors in food: Impact on gut microbiota and metabolic miseases. Nutrients. 2020;12:1158. doi: 10.3390/nu12041158. PubMed DOI PMC
Gallardo J.M., Klünder-Klünder M., Sánchez-Urbina R. Diet and maternal obesity are associated with increased oxidative stress in newborns: A cross-sectional study. Nutrients. 2022;10:746. doi: 10.3390/nu14040746. PubMed DOI PMC
Ambroz A., Vlkova V., Rossner P., Jr., Rossnerova A., Svecova V., Milcova A., Pulkrabova J., Hajslova J., Veleminsky M., Jr., Solansky I., et al. Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns. Int. J. Hyg. Environ. Health. 2016;219:545–556. doi: 10.1016/j.ijheh.2016.05.010. PubMed DOI
D’Angelo G., Chimenz R., Reiter R.J., Gitto E. Use of melatonin in oxidative stress related neonatal diseases. Antioxidants. 2020;2:477. doi: 10.3390/antiox9060477. PubMed DOI PMC
[(accessed on 17 September 2022)]. Available online: https://www.kaloricketabulky.cz/
Brazdova Z. Nutrition of Pregnant and Lactating Women: A Guide.2. vyd. Department of Preventive Medicine, M.U.; Brno, Czech Republic: 2004. (In Czech)
Polachova A., Gramblicka T., Parizek O., Sram R.J., Stupak M., Hajslova J., Pulkrabova J. Estimation of human exposure to polycyclic aromatic hydrocarbons (PAHs) based on the dietary and outdoor atmospheric monitoring in the Czech Republic. Environ. Res. 2020;182:108977. doi: 10.1016/j.envres.2019.108977. PubMed DOI
Rossner P., Jr., Rossnerova A., Spatova M., Beskid O., Uhlirova K., Libalova H., Solansky I., Topinka J., Sram R.J. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part II: Chromosomal aberrations and oxidative stress. Mutagenesis. 2013;28:97–106. doi: 10.1093/mutage/ges058. PubMed DOI
Agostoni C., Bresson J., Fairweather-Tait S., Flynn A., Golly I., Korhonen I., Lagiou P., Løvik M., Marchelli R., Martin A., et al. Scientific opinion on dietary reference values for protein. EFSA J. 2012;10:2557. doi: 10.2903/j.efsa.2012.2557. DOI
EFSA Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010;8:1462.
Mousa A., Naqash A., Lim S. Macronutrient and micronutrient intake during pregnancy: An overview of recent evidence. Nutrients. 2019;11:443. doi: 10.3390/nu11020443. PubMed DOI PMC
Cucó G., Arija V., Iranzo R., Vilà J., Prieto M.T., Fernández-Ballart J. Association of maternal protein intake before conception and throughout pregnancy with birth weight. Acta Obstet. Gynecol. Scand. 2006;85:413–421. doi: 10.1080/00016340600572228. PubMed DOI
Lowensohn R.I., Stadler D.D., Naze C. Current concepts of maternal nutrition. Obstet. Gynecol. Surv. 2016;71:413–426. doi: 10.1097/OGX.0000000000000329. PubMed DOI PMC
Zulyniak M.A., de Souza R.J., Shaikh M., Desai D., Lefebvre D.L., Gupta M., Wilson J., Wahi G., Subbarao P., Becker A.B., et al. Does the impact of a plant-based diet during pregnancy on birth weight differ by ethnicity? A dietary pattern analysis from a prospective Canadian birth cohort alliance. BMJ Open. 2017;7:e017753. doi: 10.1136/bmjopen-2017-017753. PubMed DOI PMC
Vargas-Terrones M., Nagpal T.S., Barakat R. Impact of exercise during pregnancy on gestational weight gain and birth weight: An overview. Braz. J. Phys. Ther. 2019;23:164–169. doi: 10.1016/j.bjpt.2018.11.012. PubMed DOI PMC
Gul R., Iqbal S., Anwar Z., Ahdi S.G., Ali S.H., Pirzada S. Pre-pregnancy maternal BMI as predictor of neonatal birth weight. PLoS ONE. 2020;15:e0240748. doi: 10.1371/journal.pone.0240748. PubMed DOI PMC
Navajas-Porras B., Pérez-Burillo S., Valverde-Moya Á.J., Hinojosa-Nogueira D., Pastoriza S., Rufián-Henares J.Á. Effect of cooking methods on the antioxidant capacity of plant foods submitted to in vitro digestion-fermentation. Antioxidants. 2020;9:1312. doi: 10.3390/antiox9121312. PubMed DOI PMC
Han J.H., Lee H.J., Cho M.R., Chang N., Kim Y., Oh S.Y., Kang M.H. Total antioxidant capacity of the Korean diet. Nutr. Res. Pract. 2014;8:183–191. doi: 10.4162/nrp.2014.8.2.183. PubMed DOI PMC
Sun Y., Ge X., Li X., He J., Wei X., Du J., Sun J., Li X., Xun Z., Liu W., et al. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death Dis. 2020;11:914. doi: 10.1038/s41419-020-03122-4. PubMed DOI PMC
Muñoz A., Costa M. Nutritionally mediated oxidative stress and inflammation. Oxid. Med. Cell Longev. 2013;2013:610950. doi: 10.1155/2013/610950. PubMed DOI PMC
Najjar R.S., Moore C.E., Montgomery B.D. A defined, plant-based diet utilized in an outpatient cardiovascular clinic effectively treats hypercholesterolemia and hypertension and reduces medications. Clin. Cardiol. 2018;41:307–313. doi: 10.1002/clc.22863. PubMed DOI PMC
EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel) Schrenk D., Bignami M., Bodin L., Chipman J.K., Del Mazo J., Grasl-Kraupp B., Hogstrand C., Hoogenboom L., Leblanc J., et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020;18:e06223. doi: 10.2903/j.efsa.2020.6223. PubMed DOI PMC
Pasecnaja E., Bartkevics V., Zacs D. Occurrence of selected per- and polyfluorinated alkyl substances (PFASs) in food available on the European market—A review on levels and human exposure assessment. Chemosphere. 2022;287:132378. doi: 10.1016/j.chemosphere.2021.132378. PubMed DOI
Lallas P. The Stockholm Convention on Persistent Organic Pollutants. Am. J. Int. Law. 2001;95:692–708. doi: 10.2307/2668517. DOI
Kirman C.R., Aylward L.L., Hays S.M., Krishnan K., Nong A. Biomonitoring equivalents for DDT/DDE. Regul. Toxicol. Pharmacol. 2011;60:172–180. doi: 10.1016/j.yrtph.2011.03.012. PubMed DOI
Cirillo P.M., La Merrill M.A., Krigbaum N.Y., Cohn B.A. Grandmaternal perinatal serum DDT in relation to granddaughter early menarche and adult obesity: Three generations in the child health and development studies cohort. Cancer Epidemiol. Biomark. Prev. 2021;30:1480–1488. doi: 10.1158/1055-9965.EPI-20-1456. PubMed DOI PMC
Harada T., Takeda M., Kojima S., Tomiyama N. Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT) Toxicol. Res. 2016;32:21–33. doi: 10.5487/TR.2016.32.1.021. PubMed DOI PMC
Marouani N., Hallegue D., Sakly M., Benkhalifa M., Ben Rhouma K., Tebourbi O. p,p′-DDT induces testicular oxidative stress-induced apoptosis in adult rats. Reprod. Biol. Endocrinol. 2017;26:40. doi: 10.1186/s12958-017-0259-0. PubMed DOI PMC
Thompson L.A., Ikenaka Y., Sobhy Darwish W., Nakayama S.M.M., Mizukawa H., Ishizuka M. Effects of the organochlorine p,p′-DDT on MCF-7 cells: Investigating metabolic and immune modulatory transcriptomic changes. Environ. Toxicol. Pharmacol. 2019;72:103249. doi: 10.1016/j.etap.2019.103249. PubMed DOI
Waliszewski S.M., Aguirre A.A., Infanzón R.M., Siliceo J. Carry-over of persistent organochlorine pesticides through placenta to fetus. Salud. Publica Mex. 2000;42:384–390. doi: 10.1590/S0036-36342000000500003. PubMed DOI
Tang Z.R., Xu X.L., Deng S.L., Lian Z.X., Yu K. Oestrogenic Endocrine disruptors in the placenta and the fetus. Int. J. Mol. Sci. 2020;21:1519. doi: 10.3390/ijms21041519. PubMed DOI PMC
Mrema E.J., Rubino F.M., Brambilla G., Moretto A., Tsatsakis A.M., Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;10:74–88. doi: 10.1016/j.tox.2012.11.015. PubMed DOI
Obersby D., Chappell D.C., Dunnett A., Tsiami A.A. Plasma total homocysteine status of vegetarians compared with omnivores: A systematic review and meta-analysis. Br. J. Nutr. 2013;14:785–794. doi: 10.1017/S000711451200520X. PubMed DOI
Salter A.M. The effects of meat consumption on global health. Rev. Sci. Tech. 2018;37:47–55. doi: 10.20506/rst.37.1.2739. PubMed DOI
Ford T.C., Downey L.A., Simpson T., McPhee G., Oliver C., Stough C. The effect of a high-dose vitamin B multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: A randomized control trial. Nutrients. 2018;10:1860. doi: 10.3390/nu10121860. PubMed DOI PMC
Jeon Y.M., Kwon Y., Lee S., Kim S., Jo M., Lee S., Kim S.R., Kim K., Kim H.J. Vitamin B12 reduces TDP-43 toxicity by alleviating oxidative stress and mitochondrial dysfunction. Antioxidants. 2021;11:82. doi: 10.3390/antiox11010082. PubMed DOI PMC
Wimalawansa S.J. Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology. 2019;8:30. doi: 10.3390/biology8020030. PubMed DOI PMC
Javanbakht M.H., Mohammady H., Fooladsaz K., Razzaghi M., Zarei M., Djalali M. Are serum levels of F2-isoprostane and oxidized-LDL related to vitamin d status in type 2 diabetic patients? a case-control study. Rep. Biochem. Mol. Biol. 2016;5:26–32. PubMed PMC
Darnerud P.O. Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int. 2003;29:841–853. doi: 10.1016/S0160-4120(03)00107-7. PubMed DOI
Logerova H., Tuma P., Stupak M., Pulkrabova J., Dlouha P. Evaluation of the burdening on the Czech population by brominated flame retardants. Int. J. Environ. Res. Public Health. 2019;16:4105. doi: 10.3390/ijerph16214105. PubMed DOI PMC
Schreiberova M., Skachova H., Vlasakova L. Air quality in the Czech Republic in 2020 Preliminary evaluation, I.I. part Evaluation of concentrations of benzo[a]pyrene, benzene and heavy metals (As, Cd, Ni, Pb) [(accessed on 2 February 2022)];CHMI. 2021 10:5. Available online: https://www.chmi.cz/files/portal/docs/uoco/interaktivni/zpravy/2021-04_manualniStanice2020/#chapter6. (In Czech)
Hladky D., Volna V., Krejci B. Evaluation of measurements at monitoring stations Vernovice and Mizerov in 2020. [(accessed on 2 February 2022)];CHMI. 2021 31:3. Available online: https://www.chmi.cz/files/portal/docs/poboc/OS/OCO/prehledy/mizerov_vernovice/zprava_MSK_2020.pdf. (In Czech)
European Union Commission Regulation (EU) 2020/1255 of 7 September 2020. [(accessed on 2 February 2022)];Off. J. Eur. Union. 2020 8:9. Available online: http://data.europa.eu/eli/reg/2020/1255/oj.