Associations of environmental pollution with pro-oxidant, antioxidant and inflammatory markers in pregnant mothers and newborns
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
40365460
PubMed Central
PMC12069330
DOI
10.3389/ftox.2025.1572486
PII: 1572486
Knihovny.cz E-resources
- Keywords
- antioxidant response and inflammatory cytokines, environmental pollution, lipid peroxidation, maternal exposure to newborn, oxidative DNA damage,
- Publication type
- Journal Article MeSH
The aim of the study was to analyze the variables that modify the levels of oxidative DNA damage and lipid peroxidation in non-smoking mothers and their newborns from environmentally distinct localities of the Czech Republic: Ceske Budejovice (CB, an agricultural region) and Karvina (an industrial region). Personal, socio-economic and medical data, concentrations of particulate matter of aerodynamic diameter < 2.5 µm (PM2.5) and benzo[a]pyrene (B[a]P) in the ambient air, the activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase) and antioxidant capacity), the levels of pro-inflammatory cytokines, the concentrations of persistent organic pollutants (POPs) in blood plasma/cord blood plasma and urinary levels of polycyclic aromatic hydrocarbons metabolites (OH-PAHs) were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG) and lipid peroxidation (15-F2t-isoprostane, 15-F2t-IsoP). Significantly higher levels of POPs were detected in the plasma of mothers/newborns from CB (p < 0.001), while increased external levels of B[a]P and PM2.5, confirmed by analyzing urinary OH-PAHs, were found in Karvina subjects (p < 0.001). In mothers, multivariate analysis showed no significant difference in oxidative stress markers (15-F2t-IsoP, 8-oxodG) between the two localities. The analysis further revealed that neither in CB nor, unexpectedly, in Karvina, did PAH exposure affect maternal lipid peroxidation. Significant associations between OH-PAHs and 15-F2t-IsoP or 8-oxodG were observed only in newborns. In addition, multivariate analyses revealed a borderline significant association between locality and 8-oxodG in the urine of all newborns (p = 0.05). In conclusion, not only the maternal exposure of PAHs but also some POPs can negatively affect oxidative stress status in the early-life of newborns.
Department of Obstetrics and Gynaecology Hospital Ceske Budejovice Ceske Budejovice Czechia
Department of Obstetrics and Gynaecology Hospital Karvina Raj Karvina Czechia
Faculty of Health and Social Sciences University of South Bohemia Ceske Budejovice Czechia
See more in PubMed
Ambroz A., Vlkova V., Rossner P., Jr, Rossnerova A., Svecova V., Milcova A., et al. (2016). Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns. Int. J. Hyg. Environ. health 219 (6), 545–556. 10.1016/j.ijheh.2016.05.010 PubMed DOI
Amirian A., Mahani M. B., Abdi F. (2020). Role of interleukin-6 (IL-6) in predicting gestational diabetes mellitus. Obstetrics and Gynecol. Sci. 63 (4), 407–416. 10.5468/ogs.20020 PubMed DOI PMC
Batterman S., Chin J. Y., Jia C., Godwin C., Parker E., Robins T., et al. (2012). Sources, concentrations, and risks of naphthalene in indoor and outdoor air. Indoor air 22 (4), 266–278. 10.1111/j.1600-0668.2011.00760.x PubMed DOI PMC
Bongaerts E., Lecante L. L., Bové H., Roeffaers M. B. J., Ameloot M., Fowler P. A., et al. (2022). Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies. Lancet. Planet. health 6 (10), e804–e811. 10.1016/S2542-5196(22)00200-5 PubMed DOI PMC
Castilla-Peon M. F., Medina Bravo P. G., Sánchez-Urbina R., Gallardo-Montoya J. M., Soriano-López L. C., Coronel Cruz F. M. (2019). Diabetes and obesity during pregnancy are associated with oxidative stress genotoxicity in newborns. J. Perinat. Med. 47 (3), 347–353. 10.1515/jpm-2018-0201 PubMed DOI
Chao M. R., Evans M. D., Hu C. W., Ji Y., Møller P., Rossner P., et al. (2021). Biomarkers of nucleic acid oxidation - a summary state-of-the-art. Redox Biol. 42, 101872. 10.1016/j.redox.2021.101872 PubMed DOI PMC
Delanghe J. R., Speeckaert M. M. (2011). Creatinine determination according to Jaffe-what does it stand for? NDT plus 4 (2), 83–86. 10.1093/ndtplus/sfq211 PubMed DOI PMC
Delfino R. J., Staimer N., Vaziri N. D. (2011). Air pollution and circulating biomarkers of oxidative stress. Air Qual. Atmos. and health 4 (1), 37–52. 10.1007/s11869-010-0095-2 PubMed DOI PMC
Desai G., Chu L., Guo Y., Myneni A. A., Mu L. (2017). Biomarkers used in studying air pollution exposure during pregnancy and perinatal outcomes: a review. Biomarkers 22 (6), 489–501. 10.1080/1354750X.2017.1339294 PubMed DOI PMC
Diaz-Garcia H., Vilchis-Gil J., Garcia-Roca P., Klünder-Klünder M., Gomez-Lopez J., Granados-Riveron J. T., et al. (2022). Dietary and antioxidant vitamins limit the DNA damage mediated by oxidative stress in the mother-newborn binomial. Life Basel, Switz. 12 (7), 1012. 10.3390/life12071012 PubMed DOI PMC
Dickman R. A., Aga D. S. (2022). A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). J. Hazard. Mater. 436, 129120. 10.1016/j.jhazmat.2022.129120 PubMed DOI
Dugershaw B. B., Aengenheister L., Hansen S. S. K., Hougaard K. S., Buerki-Thurnherr T. (2020). Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part. fibre Toxicol. 17 (1), 31. 10.1186/s12989-020-00359-x PubMed DOI PMC
Egsmose E. L., Bräuner E. V., Frederiksen M., Mørck T. A., Siersma V. D., Hansen P. W., et al. (2016). Associations between plasma concentrations of PCB 28 and possible indoor exposure sources in Danish school children and mothers. Environ. Int. 87, 13–19. 10.1016/j.envint.2015.11.005 PubMed DOI
England T., Beatty E., Rehman A., Nourooz-Zadeh J., Pereira P., O'Reilly J., et al. (2000). The steady-state levels of oxidative DNA damage and of lipid peroxidation (F2-isoprostanes) are not correlated in healthy human subjects. Free Radic. Res. 32 (4), 355–362. 10.1080/10715760000300351 PubMed DOI
Feng S., Gao D., Liao F., Zhou F., Wang X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 128, 67–74. 10.1016/j.ecoenv.2016.01.030 PubMed DOI
Ghosh R., Rankin J., Pless-Mulloli T., Glinianaia S. (2007). Does the effect of air pollution on pregnancy outcomes differ by gender? A systematic review. Environ. Res. 105 (3), 400–408. 10.1016/j.envres.2007.03.009 PubMed DOI
Gitto E., Pellegrino S., Gitto P., Barberi I., Reiter R. J. (2009). Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin. J. pineal Res. 46 (2), 128–139. 10.1111/j.1600-079X.2008.00649.x PubMed DOI
Jia C., Batterman S. (2010). A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. Int. J. Environ. Res. public health 7 (7), 2903–2939. 10.3390/ijerph7072903 PubMed DOI PMC
Johnson N. M., Hoffmann A. R., Behlen J. C., Lau C., Pendleton D., Harvey N., et al. (2021). Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ. health Prev. Med. 26 (1), 72. 10.1186/s12199-021-00995-5 PubMed DOI PMC
Kanaya N., Bernal L., Chang G., Yamamoto T., Nguyen D., Wang Y. Z., et al. (2019). Molecular mechanisms of polybrominated diphenyl ethers (BDE-47, BDE-100, and BDE-153) in human breast cancer cells and patient-derived xenografts. Toxicol. Sci. official J. Soc. Toxicol. 169 (2), 380–398. 10.1093/toxsci/kfz054 PubMed DOI PMC
Khachatryan A., Aleksandryan A. (2006). “Environmental conditions and health outcomes for children in Armenia: environment and child health in Armenia,” in Environmental health in central and eastern europe. Editors Donnelly K. C., Cizmas L. H. (Dordrecht: Springer; ).
Koppen G., Franken C., Den Hond E., Plusquin M., Reimann B., Leermakers M., et al. (2020). Pooled analysis of genotoxicity markers in relation to exposure in the Flemish Environment and Health Studies (FLEHS) between 1999 and 2018. Environ. Res. 190, 110002. 10.1016/j.envres.2020.110002 PubMed DOI
Krausová M., Braun D., Buerki-Thurnherr T., Gundacker C., Schernhammer E., Wisgrill L., et al. (2023). Understanding the chemical exposome during fetal development and early childhood: a review development and early childhood: a review. Annu. Rev. Pharmacol. Toxicol. 63, 517–540. 10.1146/annurev-pharmtox-051922-113350 PubMed DOI
Lappas M., Hiden U., Desoye G., Froehlich J., Hauguel-de Mouzon S., Jawerbaum A. (2011). The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxidants and redox Signal. 15 (12), 3061–3100. 10.1089/ars.2010.3765 PubMed DOI
Liu J., Tan Y., Song E., Song Y. (2020). A critical review of polychlorinated biphenyls metabolism, metabolites, and their correlation with oxidative stress. Chem. Res. Toxicol. 33 (8), 2022–2042. 10.1021/acs.chemrestox.0c00078 PubMed DOI
Milne G. L., Dai Q., Roberts L. J., 2nd (2015). The isoprostanes--25 years later. Biochimica biophysica acta 1851 (4), 433–445. 10.1016/j.bbalip.2014.10.007 PubMed DOI PMC
Mittler R. (2017). ROS are good. Trends plant Sci. 22 (1), 11–19. 10.1016/j.tplants.2016.08.002 PubMed DOI
Ojo A. F., Peng C., Ng J. C. (2021). Assessing the human health risks of per- and polyfluoroalkyl substances: a need for greater focus on their interactions as mixtures. J. Hazard. Mater. 407, 124863. 10.1016/j.jhazmat.2020.124863 PubMed DOI
Othman N., Ismail Z., Selamat M. I., Sheikh Abdul Kadir S. H., Shibraumalisi N. A. (2022). A review of polychlorinated biphenyls (PCBs) pollution in the air: where and how much are we exposed to? Int. J. Environ. Res. public health 19 (21), 13923. 10.3390/ijerph192113923 PubMed DOI PMC
Parizek O., Gramblicka T., Parizkova D., Polachova A., Bechynska K., Dvorakova D., et al. (2023). Assessment of organohalogenated pollutants in breast milk from the Czech Republic. Sci. total Environ. 871, 161938. 10.1016/j.scitotenv.2023.161938 PubMed DOI
Park H. Y., Park J. S., Sovcikova E., Kocan A., Linderholm L., Bergman A., et al. (2009). Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ. health Perspect. 117 (10), 1600–1606. 10.1289/ehp.0900611 PubMed DOI PMC
Pavlikova J., Ambroz A., Honkova K., Chvojkova I., Sram R. J., Rossner P., Jr, et al. (2022). Maternal diet quality and the health status of newborns. Foods Basel, Switz. 11 (23), 3893. 10.3390/foods11233893 PubMed DOI PMC
Perrone S., Laschi E., Buonocore G. (2019). Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic. Biol. and Med. 142, 23–31. 10.1016/j.freeradbiomed.2019.03.034 PubMed DOI
Pisoschi A. M., Pop A. (2015). The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 97, 55–74. 10.1016/j.ejmech.2015.04.040 PubMed DOI
Polachova A., Gramblicka T., Bechynska K., Parizek O., Parizkova D., Dvorakova D., et al. (2021). Biomonitoring of 89 POPs in blood serum samples of Czech city policemen. Environ. Pollut. (Barking, Essex 1987) 291, 118140. 10.1016/j.envpol.2021.118140 PubMed DOI
POPS (2024). Stockholm convention. Available online at: https://www.pops.int/TheConvention/ThePOPs/ChemicalsProposedforListing/tabid/2510/Default.aspx.
Randerath I., Schettgen T., Müller J. P., Rengelshausen J., Ziegler S., Quinete N., et al. (2024). Metabolic activation of WHO-congeners PCB28, 52, and 101 by human CYP2A6: evidence from in vitro and in vivo experiments. Archives Toxicol. 98, 3739–3753. 10.1007/s00204-024-03836-w PubMed DOI PMC
Richterová D., Fábelová L., Patayová H., Pulkrabová J., Lanková D., Rausová K., et al. (2018). Determinants of prenatal exposure to perfluoroalkyl substances in the Slovak birth cohort. Environ. Int. 121 (Pt 2), 1304–1310. 10.1016/j.envint.2018.10.051 PubMed DOI
Rohwer A. C., Khondowe O., Young T. (2013). Antispasmodics for labour. Cochrane database Syst. Rev. 2013 (6), CD009243. 10.1002/14651858.CD009243.pub3 PubMed DOI PMC
Rossner P., Jr, Mistry V., Singh R., Sram R. J., Cooke M. S. (2013). Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine values determined by a modified ELISA improves agreement with HPLC-MS/MS. Biochem. biophysical Res. Commun. 440 (4), 725–730. 10.1016/j.bbrc.2013.09.133 PubMed DOI
Rossner P., Jr, Svecova V., Milcova A., Lnenickova Z., Solansky I., Sram R. J. (2008). Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins. Mutat. Res. 642 (1-2), 21–27. 10.1016/j.mrfmmm.2008.03.004 PubMed DOI
Rossnerova A., Izzotti A., Pulliero A., Bast A., Rattan S. I. S., Rossner P. (2020). The molecular mechanisms of adaptive response related to environmental stress. Int. J. Mol. Sci. 21 (19), 7053. 10.3390/ijms21197053 PubMed DOI PMC
Ruano C. S. M., Miralles F., Méhats C., Vaiman D. (2022). The impact of oxidative stress of environmental origin on the onset of placental diseases. Antioxidants Basel, Switz. 11 (1), 106. 10.3390/antiox11010106 PubMed DOI PMC
Suh D. I., Chang H. Y., Lee E., Yang S. I., Hong S. J. (2017). Prenatal maternal distress and allergic diseases in offspring: review of evidence and possible pathways. Allergy, asthma and Immunol. Res. 9 (3), 200–211. 10.4168/aair.2017.9.3.200 PubMed DOI PMC
Szilagyi J. T., Avula V., Fry R. C. (2020). Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: a potential mechanistic role for placental peroxisome proliferator-activated receptors (PPARs). Curr. Environ. health Rep. 7 (3), 222–230. 10.1007/s40572-020-00279-0 PubMed DOI PMC
Urbancova K., Dvorakova D., Gramblicka T., Sram R. J., Hajslova J., Pulkrabova J. (2020). Comparison of polycyclic aromatic hydrocarbon metabolite concentrations in urine of mothers and their newborns. Sci. total Environ. 723, 138116. 10.1016/j.scitotenv.2020.138116 PubMed DOI
Vogel C. F., Khan E. M., Leung P. S., Gershwin M. E., Chang W. L., Wu D., et al. (2014). Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-κB. J. Biol. Chem. 289 (3), 1866–1875. 10.1074/jbc.M113.505578 PubMed DOI PMC
Wee S. Y., Aris A. Z. (2023). Environmental impacts, exposure pathways, and health effects of PFOA and PFOS. Ecotoxicol. Environ. Saf. 267, 115663. 10.1016/j.ecoenv.2023.115663 PubMed DOI
World Health Organization (2010). WHO guidelines for indoor air quality: selected pollutants. Regional Office for Europe: World Health Organization. PubMed
Wu F., Tian F. J., Lin Y. (2015). Oxidative stress in placenta: health and diseases. BioMed Res. Int. 2015, 293271. 10.1155/2015/293271 PubMed DOI PMC
Wu J. X., Lau A. T. Y., Xu Y. M. (2022). Indoor secondary pollutants cannot Be ignored: third-hand smoke. Toxics 10 (7), 363. 10.3390/toxics10070363 PubMed DOI PMC
Yi D., Yuan Y., Jin L., Zhou G., Zhu H., Finnell R. H., et al. (2015). Levels of PAH-DNA adducts in cord blood and cord tissue and the risk of fetal neural tube defects in a Chinese population. Neurotoxicology 46, 73–78. 10.1016/j.neuro.2014.12.003 PubMed DOI PMC