Regulation of Prepro-NeuropeptideW/B and Its Receptor in the Heart of ZDF Rats: An Animal Model of Type II DM

. 2022 Dec 02 ; 23 (23) : . [epub] 20221202

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499546

Grantová podpora
P39 Charles University

Neuropeptide B (NPB) and neuropeptide W (NPW) are neuropeptides, which constitute NPB/W signaling systems together with G-protein coupled receptors NPBWR1. The location and function of NPB/W signaling systems have been predominantly detected and mapped within the CNS, including their role in the modulation of inflammatory pain, neuroendocrine functions, and autonomic nervous systems. The aim of the study is to investigate the impact of diabetes on the neuropeptide B/W signaling system in different heart compartments and neurons which innervates it. In the RT-qPCR analysis, we observed the upregulation of mRNA for preproNPB in RV, for preproNPW in LA, and for NPBWR1 in DRG in diabetic rats. On the contrary, the expression of mRNA for NPBWR1 was downregulated in LV in diabetic rats. In the WB analysis, significant downregulation of NPBWR1 in LV (0.54-fold, p = 0.046) in diabetic rats was observed at the proteomic level. The presence of NPBWR1 was also confirmed in a dissected LCM section of cardiomyocytes and coronary arteries. The positive inotropic effect of NPW described on the diabetic cardiomyocytes in vitro could point to a possible therapeutic target for compensation of the contractile dysfunction in the diabetic heart. In conclusion, the NPB/W signaling system is involved in the regulation of heart functions and long-term diabetes leads to changes in the expression of individual members of this signaling system differently in each cardiac compartment, which is related to the different morphology and function of these cardiac chambers.

Zobrazit více v PubMed

Debono M., Cachia E. The impact of Cardiovascular Autonomic Neuropathy in diabetes: Is it associated with left ventricular dysfunction? Auton. Neurosci. 2007;132:1–7. doi: 10.1016/j.autneu.2006.11.003. PubMed DOI

Slavíková J., Mistrová E., Dvořáková M.C. Pathophysiology of diabetic cardiomyopathy. Diabetol. Metab. Endokrinol. Vyziv. 2018;21:21–29.

Dvorakova M.C., Wiegand S., Pesta M., Slavikova J., Grau V., Reischig J., Kuncova J., Kummer W. Expression of neuropeptide Y and its receptors Y1 and Y2 in the rat heart and its supplying autonomic and spinal sensory ganglia in experimentally induced diabetes. Neuroscience. 2008;151:1016–1028. doi: 10.1016/j.neuroscience.2007.07.069. PubMed DOI

Ejaz A., LoGerfo F.W., Khabbaz K., Pradhan L. Expression of Neuropeptide Y, Substance P, and their receptors in the right atrium of diabetic patients. Clin. Transl. Sci. 2011;4:346–350. doi: 10.1111/j.1752-8062.2011.00318.x. PubMed DOI PMC

Matyal R., Mahmood F., Robich M., Glazer H., Khabbaz K., Hess P., Bianchi C., Hagberg R., Hu S.X., Sellke F.W. Chronic type II diabetes mellitus leads to changes in neuropeptide Y receptor expression and distribution in human myocardial tissue. Eur. J. Pharmacol. 2011;665:19–28. doi: 10.1016/j.ejphar.2011.04.039. PubMed DOI PMC

Dvorakova M.C., Pfeil U., Kuncova J., Sviglerova J., Galvis G., Krasteva G., Konig P., Grau V., Slavikova J., Kummer W. Down-regulation of vasoactive intestinal peptide and altered expression of its receptors in rat diabetic cardiomyopathy. Cell Tissue Res. 2006;323:383–393. doi: 10.1007/s00441-005-0001-7. PubMed DOI

Chottova Dvorakova M., Mistrova E., Paddenberg R., Kummer W., Slavikova J. Substance P Receptor in the Rat Heart and Regulation of Its Expression in Long-Term Diabetes. Front. Physiol. 2018;9:918. doi: 10.3389/fphys.2018.00918. PubMed DOI PMC

Mistrova E., Wiegand S., Sviglerova J., Pfeil U., Kuncova J., Slavikova J., Kummer W., Dvorakova M.C. Adrenomedullin and the calcitonin receptor-like receptor system mRNA expressions in the rat heart and sensory ganglia in experimentally-induced long-term diabetes. Gen. Physiol. Biophys. 2014;33:215–225. doi: 10.4149/gpb_2013073. PubMed DOI

Chottova Dvorakova M., Kuncova J., Pfeil U., McGregor G.P., Sviglerova J., Slavikova J., Kummer W. Cardiomyopathy in streptozotocin-induced diabetes involves intra-axonal accumulation of calcitonin gene-related peptide and altered expression of its receptor in rats. Neuroscience. 2005;134:51–58. doi: 10.1016/j.neuroscience.2005.03.058. PubMed DOI

Zochodne D.W., Verge V.M., Cheng C., Sun H., Johnston J. Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain. 2001;124:2319–2334. doi: 10.1093/brain/124.11.2319. PubMed DOI

Ejaz A., LoGerfo F.W., Pradhan L. Diabetic neuropathy and heart failure: Role of neuropeptides. Expert Rev. Mol. Med. 2011;13:e26. doi: 10.1017/S1462399411001979. PubMed DOI

Gulsin G.S., Athithan L., McCann G.P. Diabetic cardiomyopathy: Prevalence, determinants and potential treatments. Ther. Adv. Endocrinol. Metab. 2019;10:2042018819834869. doi: 10.1177/2042018819834869. PubMed DOI PMC

Chottova Dvorakova M. Distribution and Function of Neuropeptides W/B Signaling System. Front. Physiol. 2018;9:981. doi: 10.3389/fphys.2018.00981. PubMed DOI PMC

Grzelak T., Wedrychowicz A., Grupinska J., Pelczynska M., Sperling M., Mikulska A.A., Naughton V., Czyzewska K. Neuropeptide B and neuropeptide W as new serum predictors of nutritional status and of clinical outcomes in pediatric patients with type 1 diabetes mellitus treated with the use of pens or insulin pumps. Arch. Med. Sci. 2019;15:619–631. doi: 10.5114/aoms.2018.75818. PubMed DOI PMC

Beck B., Bossenmeyer-Pourie C., Pourie G. Association of neuropeptide W, but not obestatin, with energy intake and endocrine status in Zucker rats. A new player in long-term stress-feeding interactions. Appetite. 2010;55:319–324. doi: 10.1016/j.appet.2010.07.002. PubMed DOI

Pandey S., Tuma Z., Peroni E., Monasson O., Papini A.M., Dvorakova M.C. Identification of NPB, NPW and Their Receptor in the Rat Heart. Int. J. Mol. Sci. 2020;21:7827. doi: 10.3390/ijms21217827. PubMed DOI PMC

Zandstra T.E., Notenboom R.G.E., Wink J., Kiès P., Vliegen H.W., Egorova A.D., Schalij M.J., de Ruiter M.C., Jongbloed M.R.M. Asymmetry and Heterogeneity: Part and Parcel in Cardiac Autonomic Innervation and Function. Front. Physiol. 2021;12:665298. doi: 10.3389/fphys.2021.665298. PubMed DOI PMC

Pandey S., Dvorakova M.C. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord. Drug Targets. 2020;20:25–38. doi: 10.2174/1871530319666190626143832. PubMed DOI PMC

Bakovic M., Paic M.J., Zdrilic E., Vukojevic K., Ferhatovic L., Marin A., Filipovic N., Grkovic I., Puljak L. Changes in cardiac innervation during maturation in long-term diabetes. Exp. Gerontol. 2013;48:1473–1478. doi: 10.1016/j.exger.2013.10.004. PubMed DOI

Yu N., Chu C., Kunitake T., Kato K., Nakazato M., Kannan H. Cardiovascular actions of central neuropeptide W in conscious rats. Regul. Pept. 2007;138:82–86. doi: 10.1016/j.regpep.2006.08.003. PubMed DOI

Achanta S., Gorky J., Leung C., Moss A., Robbins S., Eisenman L., Chen J., Tappan S., Heal M., Farahani N., et al. A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. iScience. 2020;23:101140. doi: 10.1016/j.isci.2020.101140. PubMed DOI PMC

Ji L., Zhu H., Chen H., Fan W., Chen J., Zhu G., Wang J. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7. J. Hypertens. 2015;33:2431–2442. doi: 10.1097/HJH.0000000000000723. PubMed DOI

Wang G.Y., McCloskey D.T., Turcato S., Swigart P.M., Simpson P.C., Baker A.J. Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H2013–H2017. doi: 10.1152/ajpheart.00167.2006. PubMed DOI

Kondo R.P., Dederko D.A., Teutsch C., Chrast J., Catalucci D., Chien K.R., Giles W.R. Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: A role for repolarization waveform. J. Physiol. 2006;571:131–146. doi: 10.1113/jphysiol.2005.101428. PubMed DOI PMC

Hegemann N., Primessnig U., Bode D., Wakula P., Beindorff N., Klopfleisch R., Michalick L., Grune J., Hohendanner F., Messroghli D., et al. Right-ventricular dysfunction in HFpEF is linked to altered cardiomyocyte Ca(2+) homeostasis and myofilament sensitivity. ESC Heart Fail. 2021;8:3130–3144. doi: 10.1002/ehf2.13419. PubMed DOI PMC

Belin R.J., Sumandea M.P., Sievert G.A., Harvey L.A., Geenen D.L., Solaro R.J., de Tombe P.P. Interventricular differences in myofilament function in experimental congestive heart failure. Pflug. Arch. 2011;462:795–809. doi: 10.1007/s00424-011-1024-4. PubMed DOI PMC

Khokhlova A., Myachina T., Volzhaninov D., Butova X., Kochurova A., Berg V., Gette I., Moroz G., Klinova S., Minigalieva I., et al. Type 1 Diabetes Impairs Cardiomyocyte Contractility in the Left and Right Ventricular Free Walls but Preserves It in the Interventricular Septum. Int. J. Mol. Sci. 2022;23:1719. doi: 10.3390/ijms23031719. PubMed DOI PMC

Pereira L., Matthes J., Schuster I., Valdivia H.H., Herzig S., Richard S., Gómez A.M. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes. 2006;55:608–615. doi: 10.2337/diabetes.55.03.06.db05-1284. PubMed DOI

Lacombe V.A., Viatchenko-Karpinski S., Terentyev D., Sridhar A., Emani S., Bonagura J.D., Feldman D.S., Gyorke S., Carnes C.A. Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;293:R1787–R1797. doi: 10.1152/ajpregu.00059.2007. PubMed DOI PMC

Howarth F.C., Jacobson M., Shafiullah M., Adeghate E. Long-term effects of type 2 diabetes mellitus on heart rhythm in the Goto-Kakizaki rat. Exp. Physiol. 2008;93:362–369. doi: 10.1113/expphysiol.2007.040055. PubMed DOI

Sultan A., Adeghate E., Emerald B.S., Qureshi M.A., Minhas S.T., Howarth F.C. Effects of Obesity and Diabesity on Ventricular Muscle Structure and Function in the Zucker Rat. Life. 2022;12:1221. doi: 10.3390/life12081221. PubMed DOI PMC

Ng Y.H., Lamberts R.R., Jones P.P., Sammut I.A., Diffee G.M., Wilkins G.T., Baldi J.C. Sarco/endoplasmic reticulum calcium ATPase activity is unchanged despite increased myofilament calcium sensitivity in Zucker type 2 diabetic fatty rat heart. Sci. Rep. 2022;12:16904. doi: 10.1038/s41598-022-20520-0. PubMed DOI PMC

Dezaki K., Kageyama H., Seki M., Shioda S., Yada T. Neuropeptide W in the rat pancreas: Potentiation of glucose-induced insulin release and Ca2+ influx through L-type Ca2+ channels in beta-cells and localization in islets. Regul. Pept. 2008;145:153–158. doi: 10.1016/j.regpep.2007.08.008. PubMed DOI

Mazzocchi G., Rebuffat P., Ziolkowska A., Rossi G.P., Malendowicz L.K., Nussdorfer G.G. G protein receptors 7 and 8 are expressed in human adrenocortical cells, and their endogenous ligands neuropeptides B and w enhance cortisol secretion by activating adenylate cyclase- and phospholipase C-dependent signaling cascades. J. Clin. Endocrinol. Metab. 2005;90:3466–3471. doi: 10.1210/jc.2004-2132. PubMed DOI

Wang R., Zheng C., Jiang W., Xie X., Liao R., Zhou G. Neuropeptide W regulates proliferation and differentiation of ATDC5: Possible involvement of GPR7 activation, PKA and PKC-dependent signalling cascades. J. Cell Mol. Med. 2019;23:2093–2102. doi: 10.1111/jcmm.14118. PubMed DOI PMC

Sanz J., Sánchez-Quintana D., Bossone E., Bogaard H.J., Naeije R. Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019;73:1463–1482. doi: 10.1016/j.jacc.2018.12.076. PubMed DOI

Kang Y., Wang S., Huang J., Cai L., Keller B.B. Right ventricular dysfunction and remodeling in diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2019;316:H113–H122. doi: 10.1152/ajpheart.00440.2018. PubMed DOI

Movahed M.R., Milne N. Presence of biventricular dysfunction in patients with type II diabetes mellitus. Congest. Heart Fail. 2007;13:78–80. doi: 10.1111/j.1527-5299.2007.888138.x. PubMed DOI

Yamamoto T., Saito O., Shono K., Tanabe S. Effects of intrathecal and i.c.v. administration of neuropeptide W-23 and neuropeptide B on the mechanical allodynia induced by partial sciatic nerve ligation in rats. Neuroscience. 2006;137:265–273. doi: 10.1016/j.neuroscience.2005.08.066. PubMed DOI

Pandey S., Tuma Z., Smrhova T., Cedikova M., Macanova T., Dvorakova M.C. Laser Capture Microdissection Coupled Capillary Immunoassay to Study the Expression of PCK-2 on Spatially-Resolved Islets of Rat Langerhans. Pharmaceutics. 2021;13:883. doi: 10.3390/pharmaceutics13060883. PubMed DOI PMC

Jarkovska D., Miklovic M., Sviglerova J., Cervenka L., Skaroupková P., Melenovský V., Štengl M. Effects of Trandolapril on Structural, Contractile and Electrophysiological Remodeling in Experimental Volume Overload Heart Failure. Front. Pharmacol. 2021;12:729568. doi: 10.3389/fphar.2021.729568. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...