Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36500629
PubMed Central
PMC9738912
DOI
10.3390/molecules27238536
PII: molecules27238536
Knihovny.cz E-zdroje
- Klíčová slova
- active pharmaceutical ingredients, flow chemistry, photochemistry,
- MeSH
- biologické přípravky * MeSH
- farmaceutická technologie * metody MeSH
- léčivé přípravky MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky * MeSH
- léčivé přípravky MeSH
An active pharmaceutical ingredient (API) is any substance in a pharmaceutical product that is biologically active. That means the specific molecular entity is capable of achieving a defined biological effect on the target. These ingredients need to meet very strict limits; chemical and optical purity are considered to be the most important ones. A continuous-flow synthetic methodology which utilizes a continuously flowing stream of reactive fluids can be easily combined with photochemistry, which works with the chemical effects of light. These methods can be useful tools to meet these strict limits. Both of these methods are unique and powerful tools for the preparation of natural products or active pharmaceutical ingredients and their precursors with high structural complexity under mild conditions. This review shows some main directions in the field of active pharmaceutical ingredients' preparation using continuous-flow chemistry and photochemistry with numerous examples of industry and laboratory-scale applications.
Zobrazit více v PubMed
Booker-Milburn K.I., Noel T. Flow Photochemistry. ChemPhotoChem. 2018;2:830.
Elgue S., Aillet T., Loubiere K., Conté A., Dechy-Cabaret O., Prat L., Horn C.R., Lobet O., Vallon S. Flow photochemistry: A meso-scale reactor for industrial applications. Chim. Oggi. 2015;33:58–62.
Wegner J., Ceylan S., Kirschning A. Ten key issues in modern flow chemistry. Chem. Commun. 2011;47:4583–4592. doi: 10.1039/c0cc05060a. PubMed DOI
Beeler A.B. Introduction: Photochemistry in organic synthesis. Chem. Rev. 2016;116:9629–9630. PubMed
Urge L., Alcazar J., Huck L., Dormán G. Recent advances of microfluidics technologies in the field of medicinal chemistry. Annu. Rep. Med. Chem. 2017;50:87–147.
Wegner J., Ceylan S., Kirschning A. Flow Chemistry—A Key Enabling Technology for (Multistep) Organic synthesis. Adv. Synth. Catal. 2012;354:17–57.
Hartman R.L., McCullen J.P., Jensen K.F. Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 2011;50:7502–7519. PubMed
Gutmann B., Cantillo D., Kappe O.C. Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew. Chem. Int. Ed. 2015;54:6688–6728. doi: 10.1002/anie.201409318. PubMed DOI
Rehm T.H. Reactor Technology Concepts for Flow Photochemistry. ChemPhotoChem. 2020;4:235–254. doi: 10.1002/cptc.201900247. DOI
Fitzpatrick D.E., Battilocchio C., Ley S.V. Enabling Technologies for the Future of Chemical Synthesis. ACS Cent. Sci. 2016;2:131–138. PubMed PMC
Porta R., Benaglia M., Coccia F., Rossi S., Puglisi A. Enantioselective Organocatalysis in Microreactors: Continuous Flow Synthesis of a (S)-Pregabalin Precursor and (S)-Warfarin. Symmetry. 2015;3:1395–1409.
Sambiagio C., Noël T. Flow Photochemistry: Shine Some Light. Trends Chem. 2020;2:92–106. doi: 10.1016/j.trechm.2019.09.003. DOI
Thomson C.G., Lee A.-L., Vilela F. Heterogeneous photocatalysis in flow chemical reactors. Beilstein J. Org. Chem. 2020;16:1495–1549. doi: 10.3762/bjoc.16.125. PubMed DOI PMC
Politano F., Oksdath-Mansila G. Light on the horizon: Current research and future perspective of flow-photochemistry. Org. Process Res. Dev. 2018;22:1045–1062. doi: 10.1021/acs.oprd.8b00213. DOI
Baumann M., Baxendale R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J. Org. Chem. 2015;11:1194–1219. doi: 10.3762/bjoc.11.134. PubMed DOI PMC
Snead D.R., Jamison T.F. A three-minute synthesis and purification of Ibuprofen: Pushing the limits of continuous-flow processing. Angew. Chem. Int. Ed. Engl. 2015;54:983–987. PubMed
Baumann M., Moody T.S., Smyth M., Wharry S. A Perspective on Continuous Flow Chemistry in the Pharmaceutical. Org. Process Res. Dev. 2020;24:1802–1813. doi: 10.1021/acs.oprd.9b00524. DOI
Malet-Sanz L., Susanne F. Continuous Flow Synthesis. A Pharma Perspective. J. Med. Chem. 2012;55:4062–4098. doi: 10.1021/jm2006029. PubMed DOI
Bogdan A.R., Organ M.G. Flow Chemistry for the Synthesis of Heterocycles. Springer International Publishing; Cham, Switzerland: 2018. Flow chemistry as a drug discovery tool: A medicinal chemistry perspective; pp. 319–341.
Bogdan A.R., Dombrowski A.W. Emerging trends in flow chemistry and applications to the pharmaceutical industry. J. Med. Chem. 2019;62:6422–6468. doi: 10.1021/acs.jmedchem.8b01760. PubMed DOI
Bogdan A.R., Poe S.L., Kubis D.C., Broadwater S.J., McQuade D.T. The continuous-flow synthesis of Ibuprofen. Angew. Chem. Int. Ed. 2009;48:8547–8550. doi: 10.1002/anie.200903055. PubMed DOI
Porta R., Benaglia M., Puglisi A. Flow chemistry: Recent developments in the Synthesis of Pharmaceutical products. Org. Process Res. Dev. 2016;20:2–25.
Suttie J.W. Warfarin and vitamin K. Clin. Cardiol. 1990;13:VI–16–VI–18. PubMed
Atropine. [(accessed on 18 October 2022)]. Available online: https://go.drugbank.com/drugs/DB00572.
Sztejnberg A. Albert Ladenburg (1842-1911) – The Distinguished German Chemist and Historian of Chemistry of the Second Half of the XIX Century (To the 110th Anniversary of His Death) Substantia. 2021;5:153–164. doi: 10.36253/Substantia-1231. DOI
Grynkiewicz G., Gadzikowska M. Tropane alkaloid as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol. Rep. 2008;60:439–463. PubMed
Dai C., Snead D.R., Zhang P., Jamison T.F. Continuous-Flow Synthesis and Purification of Atropine with Sequential In-Line Separations of Structurally Similar Impurities. J. Flow. Chem. 2015;5:133–138. doi: 10.1556/1846.2015.00013. DOI
Bédard A.C., Longstreet A.R., Britton J., Wang Y., Moriguchi H., Hicklin R.W., Green W.H., Jamison T.F. Minimizing E-factor in the continuous flow synthesis of Diazepam and Atropine. Bioorgan. Med. Chem. 2017;25:6233–6241. PubMed
Diab S., Gerogiorgis D.I. Process modeling, simulation and technoeconomic optimisation for continuous pharmaceutical manufacturing of (S)-warfarin. Comput. Aided Chem. Eng. 2018;43:1643–1648.
Yang Y., Cui Y., Sang K., Dong Y., Ni Z., Ma S., Hu H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–322. PubMed
Stevens C.L. Aminoketones and Methods for Their Production. 3254124. U.S. Patent. 1966 May 31;
Chmabers S.A., DeSousa J.M., Huseman E.D., Townsend S.D. The DARK side of total synthesis: Strategies and tactics in psychoactive drug production. ACS Chem. Neurosci. 2018;10:2307–2330. PubMed PMC
Kassin V.H., Gérardy R., Toupy T., Collin D., Salvadeo E., Toussaint F., van Hecke K., Monbaliu J.C. Expedient preparation of active pharmaceutical ingredient ketamine under sustainable continuous flow conditions. Green Chem. 2019;21:2952–2966. doi: 10.1039/C9GC00336C. DOI
Morodo R., Bianchi P., Monbaliu J.-C.M. Continuous flow organophosphorus chemistry. Eur. J. Org. Chem. 2020;33:5235–5278. doi: 10.1002/ejoc.202001149. DOI
Peng B., Lloyd P., Schran H. Clinical pharmacokinetics of Imatinib. Clin. Pharmacokinet. 2005;44:879–894. doi: 10.2165/00003088-200544090-00001. PubMed DOI
Hopkin M.D., Baxendale I.R., Ley S.V. A flow-based synthesis of Imatinib: The API of Gleevec. Chem. Commun. 2010;46:2450–2452. doi: 10.1039/c001550d. PubMed DOI
Fu W.C., Jamison T.F. Modular continuos flow synthesis of Imatinib and analogues. Org. Lett. 2019;21:6112–6116. PubMed
Bloemendal V.R.L.J., Janssen M.A., van Hest J.C.M., Rutjes F.P.J.T. Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. React. Chem. Eng. 2020;5:1186–1197. doi: 10.1039/D0RE00087F. DOI
Rufinamide. [(accessed on 21 March 2021)]; Available online: https://medlineplus.gov/druginfo/meds/a609001.html.
Sorbera L., Leeson P., Rabasseda X., Castaner J. Rufinamide. Antiepileptic, treatment of neurogenic pain. Drugs Future. 2000;25:1145–1149. doi: 10.1358/dof.2000.025.11.599595. DOI
Mudd W.H., Stevens E.P. An afficient synthesis of Rufinamide, an antiepileptic drug. Tetrahedron Lett. 2010;51:3229–3231. doi: 10.1016/j.tetlet.2010.04.060. DOI
Ott D., Borukhova S., Hessel V. Life cycle assessment of multi-step rufinamide synthesis—From isolated reactions in batch to continuous microreactor networks. Green Chem. 2016;18:1096–1116.
Borukhova S., Noel T., Metten B., de Vos E., Hessel V. Solvent- and Catalyst-Free Huisgen Cycloaddition to Rufinamide in Flow with a Greener, Less Expensive Dipolarophile. ChemSusChem. 2013;6:2220–2225. doi: 10.1002/cssc.201300684. PubMed DOI
Zhang P., Russell M.G., Jamison T.F. Continuous flow synthesis of Rufinamide. Org. Process Res. Dev. 2014;18:1567–1570. doi: 10.1021/op500166n. DOI
Bogdan A.R., Sach N.W. The Use of Copper Flow Reactor Technology for the Continuous Synthesis of 1,4-Disubstituted 1,2,3-Triazoles. Adv. Synth. Catal. 2009;351:849–854. doi: 10.1002/adsc.200800758. DOI
Chatterjee S., Guidi M., Seeberger P., Gilmore K. Automated radial synthesis of organic molecules. Nature. 2020;579:379–384. doi: 10.1038/s41586-020-2083-5. PubMed DOI
Magano J. Synthetic approaches to the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza. Chem. Rev. 2009;109:4398–4438. doi: 10.1021/cr800449m. PubMed DOI
Mukaiyama T., Ishikawa H., Koshino H., Hayashi Y. One-pot synthesis of (-)-Oseltamivir and mechanistic insights into the organocatalyzed Michael reaction. Chem.-Eur. J. 2013;19:17789–17800. PubMed
Ogasawara S., Hayashi Y. Multistep Continuous-flow synthesis of (-)-Oseltamivir. Synthesis. 2017;49:424–428.
Clemett D., Markham A. Prolonged-release mesalazine: A review of its therapeutic potential in ulcerative colitis and Crohn’s disease. Drugs. 2000;4:815–827. doi: 10.2165/00003495-200059040-00007. PubMed DOI
Perrault W.R. The Synthesis of N-Aryl-5(S)-aminomethyl-2-oxazolidinone Antibacterials and Derivatives in One Step from Aryl Carbamates. Org. Process Res. Dev. 2003;7:533–546. doi: 10.1021/op034028h. DOI
Russell M.G., Jamison T.F. Seven-step continuous flow synthesis of Linezolid without intermediate purification. Angew. Chem. Int. Ed. 2019;58:7678–7681. PubMed
Taylor J.W., Armstrong T., Kim A.H., Venere M., Acquaye A., Schrag D., Wen P.Y. The Lomustine crisis: Awareness and impact of the 1500% price hike. Neuro-Oncol. 2019;21:1–3. PubMed PMC
Loftus P. Cancer drug price rises 1400% with no generic to challenge it. Wall Str. J. 2017;12:26.
Jaman Z., Sobreira T.J., Mufti A., Ferreira C.R., Cooks R.G., Thompson D.H. Rapid On-Demand Synthesis of Lomustine under Continuous Flow Conditions. Org. Process Res. Dev. 2019;23:334–341. doi: 10.1021/acs.oprd.8b00387. DOI
MacDonald R.L., Olsen R.W. GABAA receptor channels. Annu. Rev. Neurosci. 1994;17:569–602. PubMed
Sommer N., LöSchmann P.A., Northoff G.H., Weller M., Steinbrecher A., Steinbach J.P., Lichtenfels R., Meyermann R., Riethmüller A., Fontana A., et al. The antidepressant Rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat. Med. 1995;1:244–248. doi: 10.1038/nm0395-244. PubMed DOI
Tsubogo T., Oyamada H., Kobayashi S. Multistep continuous-flow synthesis of (R)- and (S)-Rolipram using heterogeneous catalyst. Nature. 2015;520:329–332. doi: 10.1038/nature14343. PubMed DOI
Yoo W.J., Ishitani H., Saito Y., Laroche B., Kobayashi S. Reworking organic synthesis for the modern age: Synthetic strategies based on continuous flow addition and condensation reactions with heterogeneous catalyst. J. Org. Chem. 2020;85:5132–5145. doi: 10.1021/acs.joc.9b03416. PubMed DOI
Kernan W.N., Viscoli C.M., Brass L.M., Broderick J.P., Brott T., Feldmann E., Morgenstern L.B., Wilterdink J.L., Horwitz R.I. Phenylpropanolamine and the risk of hemorrhagic stroke. N. Engl. J. Med. 2000;343:1826–1832. doi: 10.1056/NEJM200012213432501. PubMed DOI
Rossi S., Porta R., Brenna D., Puglisi A., Benaglia M. Stereoselective Catalytic Synthesis of Active Pharmaceutical. Angew. Chem. Int. Ed. 2017;56:4290–4294. PubMed
Baumann M., Baxendale I.R. Continuous Photochemistry: The flow synthesis of Ibuprofen via a Photo-Favorskii rearrangement. React. Chem. Eng. 2016;1:147–150.
Karioti A., Bilia A.R. Hypericins as Potential Leads for New Therapeutics. Int. J. Mol. Sci. 2010;2:562–594. doi: 10.3390/ijms11020562. PubMed DOI PMC
Joniova J., Rebic M., Strejckova A., Huntosova V., Stanicova J., Jancura D., Miskovsky P., Bano G. Formation of large Hypericin aggregates in giant unilamellar vesicles – experiments and modeling. Biophys J. 2017;112:966–975. PubMed PMC
Do M.H., Kim S.Y. Hypericin, a Naphthodianthrone derivative, prevents methylglyoxal-induced human endothelial cell dysfunction. Biomol. Ther. 2017;25:158–164. PubMed PMC
Huntosova V., Novotova M., Nichtova Z., Balogová L., Maslankova M., Petrovajova D., Stroffekova K. Assessing light-independent effects of hypericin on cell viability, ultrastructure and metabolism in human glioma and endothelial cells. Toxicol. Vitro. 2017;40:184–195. PubMed
Brockmann H. Carotinoide von P. Karrer und E. Jucker, Lehrbücher und Monographien aud dem Gebiete der exakten Wissenschaften, Chemische Reihe Band III. Verlag Birkhäuser, Basel 1948. 388 S. 28 Bilder. Preis broschiert 39.–Fr., geb. 43.– Fr. Angew. Chem. 1949;61:389. doi: 10.1002/ange.19490610611. DOI
Brockmann H., Eggers H. Partial synthese von photo-hypericin und Hypericin aus Penicilliopsin. Chem. Ber. 1958;91:81–100. doi: 10.1002/cber.19580910117. DOI
Aigner S., Falk H. A microwave-assisted synthesis of phenanthroperylene quinones as exemplified with hypericin. Monatsh. Chem. 2008;139:991–993.
Huang L.F., Wang Z.H., Chen S.L. Hypericin: Chemical synthesis and biosynthesis. Chin. J. Nat. Med. 2014;12:81–88. doi: 10.1016/S1875-5364(14)60014-5. PubMed DOI
Steglich W., Arnold R. Synthesis of Hypericin and Related meso-Naphthodianthrones by Alkaline Dimerization of Hydroxyanthraquinones. Angew. Chem. Int. Ed. Engl. 1973;12:79. doi: 10.1002/anie.197300791. PubMed DOI
Mazur Y., Bock H., Lavie D. Preparation of Hypericin. 5,120,412A. US Patent. 1992 June 9;
Falk H., Schoppel G. On the synthesis of hypericin by oxidative trimethylemodin anthrone and emodin anthrone dimerization: Isohypericin. Monatsh. Chem. 1992;123:931–938.
Gruszecka-Kowalik E., Zalkow L.H. An improved synthesis of Hypericin and related compounds. Org. Prep. Proced. Int. 2000;32:57–61. doi: 10.1080/00304940009356746. DOI
Goncalves R.S., Rabello B.R., César G.B., Periera P.C.S., Ribeiro M.A.S., Meurer E.C., Hioka N., Nakamura C.V., Bruschi M.L., Caetano W. An efficient multigram synthesis of Hypericin improved by a low powered LED based photoreactor. Org. Process Res. Dev. 2017;21:2025–2031.
Frankowski K.I., Setola V., Evans J.M., Neuenswander B., Roth B.L., Aubé J. Synthesis and receptor profiling of Stemona alkaloid analogues reveal a potent class of sigma ligands. PNAS. 2011;108:6727–6732. doi: 10.1073/pnas.1016558108. PubMed DOI PMC
Hook B.D.A., Dohle W., Hirst P.R., Pickworth M., Berry M.B., Booker-Milburn K.I. A practical flow reactor for continuous organic photochemistry. J. Org. Chem. 2005;70:7558–7564. doi: 10.1021/jo050705p. PubMed DOI
Lainchbury M.D., Medley M.I., Taylor P.M., Hirst P., Dohle W., Booker-Milburn K.I. A Protecting Group Free Synthesis of (±)-Neostenine via the [5+2] Photocycloaddition of Maleimides. J. Org. Chem. 2008;73:6497–6505. doi: 10.1021/jo801108h. PubMed DOI
Cambié D., Bottecchia C., Straathof N.J., Hessel V., Noel T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 2016;116:10276–10341. PubMed
Tuchinda P., Munyoo B., Pohmakotr M., Thinapong P., Sophasan S., Santisuk T., Reutrakul V. Cytotoxic Styryl-Lactones from the Leaves and Twigs of Polyalthia crassa. J. Nat. Prod. 2006;12:1728–1733. PubMed
Popsavin V., Sreco B., Benedecovic G., Francuz J., Popsavin M., Kojic V., Bogdanovic G. Design, synthesis and antiproliferative activity of styryl lactones related to (+)-goniofufurone. Eur. J. Med. Chem. 2010;45:2876–2883. doi: 10.1016/j.ejmech.2010.03.010. PubMed DOI
Michael R., Ng S., Booker-Milburn K.I. Short flow-photochemistry enabled synthesis of the cytotoxic lactone (+)-Goniofufurone. Org. Lett. 2016;18:968–971. PubMed
Dembitsky V., Shkrob I., Hanus L.O. Ascaridole and related peroxides from the genus Chenopodium. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. Repub. 2008;2:209–215. PubMed
Pare P.W., Zajicek J., Ferracini V.L., Melo I.S. Antifungal terpenoids from Chenopodium ambrosioides. Biochem. Syst. Ecol. 1993;21:649–653.
Efferth T., Olbrich A., Sauerbrey A., Ross D.D., Gebhart E., Neugebauer M. Activity of Ascaridol from the anthelmintic herb Chenopodium anthelminticum L. against sensitive and multidrug-resistant tumor cells. Anticancer Res. 2002;22C:4221–4224. PubMed
Wootton R.C.R., Fortt R., de Mello A.J. A Microfabricated Nanoreactor for Safe, Continuous Generation and Use of Singlet Oxygen. Org. Process Res. Dev. 2002;6:187–189. doi: 10.1021/op0155155. DOI
Knowles J.P., Elliott L.D., Booker-Milburn K.I. Flow photochemistry: Old light through new windows. Beilstein J. Org. Chem. 2012;8:2025–2052. doi: 10.3762/bjoc.8.229. PubMed DOI PMC
Bundred N., Howell A. Fulvestrant (Faslodex[trademark]): Current status in the therapy of breast cancer. Expert Rev. Anticancer Ther. 2002;2:151. doi: 10.1586/14737140.2.2.151. PubMed DOI
Rosso C., Williams J.D., Filippini G., Prato M., Kappe C.O. Visible-light mediated Iodoperfluoroalkylation of alkenes in flow and its application to the synthesis of a key Fulvestrant intermediate. Org. Lett. 2019;21:5341–5345. doi: 10.1021/acs.orglett.9b01992. PubMed DOI
Brazier E.J., Hogan P.J., Leung C.W., O´Kearney-McMullan A., Norton A.K., Powell L., Robinson G.E., Williams E.G. Fulvestrant: From the Laboratory to Commercial-Scale Manufacture. Org. Process. Res. Dev. 2010;14:544. doi: 10.1021/op900315j. DOI
Qian L.Y., Yang L., Tian X. Podophylloxin: Current perspectives. Curr. Bioact. Compd. 2007;3:37–66. doi: 10.2174/157340707780126499. DOI
Lisiecki K., Czarnocki Z. Flow photochemistry as a tool for the total synthesis of (+)-Epigalcatin. Org. Lett. 2018;20:605–607. PubMed
Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–415. PubMed
Sakurawi K., Yasuda F., Tozyo T., Nakamura M., Sato T., Kikuchi J., Terui Y., Ikenishi Y., Iwata T., Takahashi K., et al. Endothelin receptor antagonist triterpenoid, Myriceric acid A, Isolated from Myrica cerifera, nad structure activity relationship of its derivatives. Chem. Pharm. Bull. 1996;44:343–351. doi: 10.1248/cpb.44.343. PubMed DOI
Sugimoto A., Sumino Y., Takagi M., Fukuyama T., Ryu I. The Barton reaction using a microreactor and Black light. Continuous flow synthesis of a key steroid intermediate for an Endothelin receptor antagonist. Tetrahedron Lett. 2006;47:6197–6200.
Sugimoto A., Fukuyama T., Sumino Y., Takagi M., Ryu I. Microflow photo-radical reaction using a compact light source: Application to the Barton reaction leading to a key intermediate for myriceric acid A. Tetrahedron. 2009;65:1593–1598.
Aweeka F.T., German P.I. Clinical pharmacology of Artemisinin-based combination therapies. Clin. Pharmacokinet. 2008;47:91–102. doi: 10.2165/00003088-200847020-00002. PubMed DOI
Krieger J., Smeilus T., Kaiser M., Seo E.-J., Efferth T., Giannis A. Total synthesis and biological investigation of (-)-Artemisinin: The antimalarial activity of Artemisinin is not stereospecific. Angew. Chem. Int. Ed. 2018;57:8293–8296. PubMed
Lévesque F., Seeberger P.H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed. 2012;51:1706–1709. doi: 10.1002/anie.201107446. PubMed DOI
Callaway E., Cyranoski D. Anti-parasite drugs sweep Nobel prize in medicine 2015. Nature. 2015;526:174–175. PubMed
Peplow M. Sanofi Launches Malaria Drug Production. [(accessed on 4 April 2021)]. Available online: https://www.chemistryworld.com/news/sanofi-launches-malaria-drug-production/6068.article.
WebMD. [(accessed on 4 April 2021)]. Available online: https://www.webmd.com/drugs/2/drug-6152/cholecalciferol-vitamin-d3-oral/details.
Fuse S., Tanabe N., Yoshida M., Yoshida H., Doi T., Takahashi T. Continuous-flow synthesis of vitamin D3. Chem. Commun. 2009;46:8722–8724. doi: 10.1039/c0cc02239j. PubMed DOI
Dauben W.G., Phillips R.B. Wavelenght-Controlled production of previtamin D3. J. Am. Chem. Soc. 1982;104:355–356.
Davidson M.H., Robinson J.G. Lipid/lowering effects of statins> a comparative review. Expert Opin. Pharmacother. 2006;13:1701–1704. doi: 10.1517/14656566.7.13.1701. PubMed DOI
Šterk D., Jukič M., Časar Z. Application of Flow Photo-chemical Bromination in the synthesis of 5-Bromomethylpyrimidine precursors of Rosuvastatin: Improvement of productivity and product purity. Org. Process Res. Dev. 2013;1:145–151.
Machado L., Spengler G., Evaristo M., Handzlik J., Molnár J., Viveiros M., Kiec-Konowicz K., Amaral L. Biological activity of twenty-three Hydantoin derivatives on Intrinsic efflux pump system of Salmonella enterica serovar Enteritidis NCTC 13349. In Vivo. 2011;5:25, 769–772. PubMed
Vukelic S., Koksch B., Seeberger P.H., Gilmore K. A sustainable, semi-continuous flow synthesis of Hydantoins. Chem.-Eur. J. 2016;22:13451–13454. doi: 10.1002/chem.201602609. PubMed DOI
Diekema D.J., Jones R.N. Oxazolidinone antibiotics. Lancet. 2001;358:1975–1982. PubMed
Gravestock M.B. Recent developments in the discovery of novel oxazolidinone antibacterials. Curr. Opin. Drug Discov. Devel. 2005;8:469–477. PubMed
Davies S.G., Fletcher A.M., Frost A.B., Roberts P.M., Thompson J.E. Trading N and O. Part 2: Exploiting aziridinium intermediates for the synthesis of β-hydroxy-α-amino acids. Tetrahedron. 2014;70:5849–5862.
Slama S., Besbes R. Stereoselective synthesis of erythro-β-chloroamines and their conversion into functionalized trans-oxazolidin-2-ones. Tetrahedron. 2014;70:4732–4737. doi: 10.1016/j.tet.2014.05.063. DOI
Crich D., Banerjee A. Expedient Synthesis of threo-β-Hydroxy-α-amino Acid Derivatives: Phenylalanine, Tyrosine, Histidine, and Tryptophan. J. Org. Chem. 2006;71:7106–7109. PubMed PMC
Chen Y., de Frutos O., Mateos C., Rincon J.A., Cantillo D., Kappe C.O. Continuous flow photochemical benzylic bromination of a key intermediate in the synthesis of a 2-Oxazolidinone. ChemPhotoChem. 2018;2:906–912. doi: 10.1002/cptc.201800114. DOI
Bacon C.W., D´Orso I. CDK9: A signaling hub for transcriptional control. Transcription. 2019;2:57–75. doi: 10.1080/21541264.2018.1523668. PubMed DOI PMC
Cassandri M., Fioravanti R., Pomella S., Valente S., Rotili D., del Baldo G., de Angelis B., Rota R., Mai A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front. Pharmacol. 2020;11:1230. doi: 10.3389/fphar.2020.01230. PubMed DOI PMC
Herbrik F., Sanz M., Puglisi A., Rossi S., Benaglia M. Enantioselective Organophotocatalytic Telescoped Synthesis of a Chiral Privileged Active Pharmaceutical Ingredient. Chem. Eur. J. 2022;28:e202200164. doi: 10.1002/chem.202200164. PubMed DOI PMC