Computer Simulation of Composite Materials Behavior under Pressing

. 2022 Dec 03 ; 14 (23) : . [epub] 20221203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36501680

Grantová podpora
KEGA project No. 003TnUAD-4/2022 Cultural and Educational Grant Agency of the Slovak Republic (KEGA)
project UJEP-SGS-2022-48-001-2 J. E. Purkyně University in Ustí nad Labem, Czech Republic

Composite materials have a wide range of functional properties, which is ensured by using various technological methods of obtaining both the matrix or fillers and the composition as a whole. A special place belongs to the composition formation technology, which ensures the necessary structure and properties of the composite. In this work, a computer simulation was carried out to identify the main dependencies of the behavior of composite materials in the process of the main technological operations of their production: pressing and subsequent sintering. A polymer matrix randomly reinforced with two types of fillers: spherical and short cylindrical inclusions, was used to construct the finite element models of the structure of composites. The ANSYS Workbench package was used as a calculation simulation platform. The true stress-strain curves for tension, Poisson's ratios, and ultimate stresses for composite materials were obtained using the finite element method based on the micromechanical approach at the first stage. These values were calculated based on the stretching diagrams of the matrix and fillers and the condition of the ideality of their joint operation. At the second stage, the processes of mechanical pressing of composite materials were modelled based on their elastic-plastic characteristics from the first stage. The result is an assessment of the accumulation of residual strains at the stage before sintering. The degree of increase in total strain capability of composite materials after sintering was shown.

Zobrazit více v PubMed

Torralba J.M. Improvement of Mechanical and Physical Properties in Powder Metallurgy. In: Hashmi S., Batalha G.F., Van Tyne C.J., Yilbas B., editors. Comprehensive Materials Processing. Volume 3. Elsevier; Amsterdam, The Netherlands: 2014. pp. 281–294. DOI

Wang Q.B., Jia D.L., Pei X.H., Wu X.L., Xu F., Ye Z.H., Wang H.X. Mechanical performance of graphenex/poly(ether ketone ketone) composite sheets by hot pressing. Sci. Rep. 2022;12:4114. doi: 10.1038/s41598-022-08221-0. PubMed DOI PMC

Grasso S., Biesuz M., Zoli L., Taveri G., Duff A.I., Ke D., Jiang A., Reece M.J. A review of cold sintering processes. Adv. Appl. Ceram. 2020;119:115–143. doi: 10.1080/17436753.2019.1706825. DOI

Guo J., Floyd R., Lowum S., Maria J.-P., Herisson de Beauvoir T.H., Seo J.-H., Randall C.A. Cold Sintering: Progress, Challenges, and Future Opportunities. Annu. Rev. Mater. Res. 2019;49:275–295. doi: 10.1146/annurev-matsci-070218-010041. DOI

Wang C., Zhong W., Ping W., Lin Z., Wang R., Dai J., Guo M., Xiong W., Zhao J.-C., Hu L. Rapid Synthesis and Sintering of Metals from Powders. Adv. Sci. 2021;8:2004229. doi: 10.1002/advs.202004229. PubMed DOI PMC

Abdulhameed O., Al-Ahmari A., Ameen W., Mian S.H. Additive manufacturing: Challenges, trends, and applications. Adv. Mech. Eng. 2019;11:1–27. doi: 10.1177/1687814018822880. DOI

Shadangi Y., Shivam V., Chattopadhyay K., Mukhopadhyay N.K. Powder Metallurgical Processing of Sn-Reinforced Al-Cu-Fe Quasicrystals: Structure, Microstructure and Toughening Behavior. J. Manuf. Mater. Process. 2022;6:60. doi: 10.3390/jmmp6030060. DOI

Maurya H.S., Kollo L., Tarraste M., Juhani K., Sergejev F., Prashanth K.G. Effect of the Laser Processing Parameters on the Selective Laser Melting of TiC–Fe-Based Cermets. J. Manuf. Mater. Process. 2022;6:35. doi: 10.3390/jmmp6020035. DOI

Zhang X., Xu Y., Wang M., Liu E., Zhao N., Shi C., Lin D., Zhu F., He C. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites. Nat. Commun. 2020;11:2775. doi: 10.1038/s41467-020-16490-4. PubMed DOI PMC

Friedrich K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018;1:3–39. doi: 10.1016/j.aiepr.2018.05.001. DOI

Conte M., Igartua A. Study of PTFE composites tribological behavior. Wear. 2012;296:568–574. doi: 10.1016/j.wear.2012.08.015. DOI

Budnik O.A., Sviderskii V.A., Budnik A.F., Berladir K.V., Rudenko P.V. Composite Material for Chemical and Petrochemical Equipment Friction Assemblies. Chem. Petrol. Eng. 2016;52:63–68. doi: 10.1007/s10556-016-0149-x. DOI

Bilous O.A., Hovorun T.P., Berladir K.V., Vorobiov S.I., Simkulet V.V. Mathematical modeling of the mechanical characteristic of the activated PTFE-matrix using the method of planning the experiment. J. Eng. Sci. 2018;5:C1–C5. doi: 10.21272/jes.2018.5(1).c1. DOI

Zhao Z.H., Chen J.N. Preparation of single-polytetrafluoroethylene composites by the processes of compression molding and free sintering. Compos. Part B Eng. 2011;42:1306–1310. doi: 10.1016/j.compositesb.2011.01.005. DOI

Berladir K.V., Sviderskiy V.A. Designing and examining polytetrafluoroethylene composites for tribotechnical purposes with activated ingredients. East.-Eur. J. Enterp. Technol. 2016;6:14–21. doi: 10.15587/1729-4061.2016.85095. DOI

Tang X.Z., Wang Z.J., Yi J., Han Y.Y., Wang Y.F., Jia Z.J. Experimental study of hot pressed sintered modified materials. J. Phys. Conf. Ser. 2020;1507:032061. doi: 10.1088/1742-6596/1507/3/032061. DOI

Poitou B., Dore F., Champomier R. Mechanical and physical charactersations of polytetrafluoroethylene by high velocity compaction. Int. J. Mater. Form. 2009;2:657. doi: 10.1007/s12289-009-0649-8. DOI

Wang Y., Jiang C., Wang Z. Effect of Sintering Factors on Properties of Al-Rich PTFE/Al/TiH2 Active Materials. Polymers. 2021;13:1705. doi: 10.3390/polym13111705. PubMed DOI PMC

Tang X., Wang Z., Zhang X., Xu Y., Yi J. Comparative study on microstructure and properties of different designed PTFE/Cu materials. J. Mater. Res. Technol. 2022;17:1512–1521. doi: 10.1016/j.jmrt.2022.01.123. DOI

Tóth L.F., Baets P.D., Szebényi G. Processing Analysis of Nanoparticle Filled PTFE: Restrictions and Limitations of High Temperature Production. Polymers. 2020;12:2044. doi: 10.3390/polym12092044. PubMed DOI PMC

Zhang S., Li Q., Che Y., Wu C., Guo W. Preparation and Properties of Composites of Carbon Black Reinforced Polytetrafluoroethylene Prepared by a Two-step Process. Chin. J. Mater. Res. 2017;31:847–852. doi: 10.11901/1005.3093.2016.292. DOI

Chung S.H., Kwon Y., Park S.J., German R.M. Modeling and Simulation of Press and Sinter Powder Metallurgy. In: Furrer D.U., Semiatin S.L., editors. Metals Process Simulation. Volume 22B. ASM International; Novelty, OH, USA: 2010. pp. 323–334. DOI

Minh P.S., Nguyen V.T., Nguyen V.T., Uyen T.M.T., Do T.T., Nguyen V.T.T. Study on the Fatigue Strength of Welding Line in Injection Molding Products under Different Tensile Conditions. Micromachines. 2022;13:1890. doi: 10.3390/mi13111890. PubMed DOI PMC

Singh M., Sharma S., Muniappan A., Pimenov D.Y., Wojciechowski S., Jha K., Dwivedi S.P., Li C., Królczyk J.B., Walczak D., et al. In Situ Micro-Observation of Surface Roughness and Fracture Mechanism in Metal Microforming of Thin Copper Sheets with Newly Developed Compact Testing Apparatus. Materials. 2022;15:1368. doi: 10.3390/ma15041368. PubMed DOI PMC

Thuong Huynh T., Nguyen T.V.T., Manh Nguyen Q., Khoa Nguyen T. Minimizing warpage for macro-size fused deposition modeling parts. Comput. Mater. Contin. 2021;68:2913–2923. doi: 10.32604/cmc.2021.016064. DOI

Chen S., Xu Y., Jiao Y. Modeling solid-state sintering with externally applied pressure: A geometric force approach. AIMS Mater. Sci. 2017;4:75–88. doi: 10.3934/matersci.2017.1.75. DOI

Nosewicz S., Rojek J., Chmielewski M., Pietrzak K. Discrete Element Modeling of Intermetallic Matrix Composite Manufacturing by Powder Metallurgy. Materials. 2019;12:281. doi: 10.3390/ma12020281. PubMed DOI PMC

Nosewicz S., Rojek J., Chmielewski M. Discrete Element Framework for Determination of Sintering and Postsintering Residual Stresses of Particle Reinforced Composites. Materials. 2020;13:4015. doi: 10.3390/ma13184015. PubMed DOI PMC

Rajaei A., Deng Y., Schenk O., Rooein S., Bezold A., Broeckmann C. Numerical Modelling of the Powder Metallurgical Manufacturing Chain of High Strength Sintered Gears. Chin. J. Mech. Eng. 2021;34:143. doi: 10.1186/s10033-021-00646-4. DOI

Matsuda T. Distortion prediction during sintering using Monte Carlo method implemented with virtual springs. Int. J. Ceram. Eng. Sci. 2022;4:270–280. doi: 10.1002/ces2.10135. DOI

Zhanga Y., Xiaob X., Zhanga J. Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography. Results Phys. 2019;13:102336. doi: 10.1016/j.rinp.2019.102336. DOI

Reiterera M., Krafta T., Janosovitsb U., Riedela H. Finite element simulation of cold isostatic pressing and sintering of SiC components. Ceram. Int. 2004;30:177–183. doi: 10.1016/S0272-8842(03)00086-5. DOI

Zhu Y., Li N., Li W., Niu L., Li Z. Atomistic Study on the Sintering Process and the Strengthening Mechanism of Al-Graphene System. Materials. 2022;15:2644. doi: 10.3390/ma15072644. PubMed DOI PMC

Cricrì G., Perrella M. Modelling the mechanical behaviour of metal powder during Die compaction process. Frattura Integr. Strutt. 2016;37:333–341. doi: 10.3221/IGF-ESIS.37.44. DOI

Wikman B., Svoboda A., Häggblad H.-Å. A combined material model for numerical simulation of hot isostatic pressing. Comput. Methods Appl. Mech. Eng. 2000;189:901–913. doi: 10.1016/S0045-7825(99)00406-5. DOI

Qiu H., Zhu Y.G., Zhang L. Thermal Stress Analysis of Powder Metallurgy Sintering Process Based on ANSYS. KEM. 2015;667:3244–3249. doi: 10.4028/www.scientific.net/KEM.667.244. DOI

He H., Wang J., Li S., Chen Z., Sun J., You Y. Temperature Field Simulation of Powder Sintering Process with ANSYS. IOP Conf. Ser. Mater. Sci. Eng. 2015;324:012008. doi: 10.1088/1757-899X/324/1/012008. DOI

Guenoun G., Faou J.-Y., Régnier G., Schmitt N., Roux S. Thermal cycling of cold-pressed PTFE compacts: Reversible and irreversible behavior. Polym. Test. 2019;75:99–106. doi: 10.1016/j.polymertesting.2019.01.018. DOI

Luo C., Pei J., Zhuo W., Niu Y., Lia G. Phase transition behavior and deformation mechanism of polytetrafluoroethylene under stretching. RSC Adv. 2021;11:39813–39820. doi: 10.1039/D1RA06333B. PubMed DOI PMC

Sumitani Y., Ono Y., Saito Y., Matsushita Y., Aoki H., Shishido T., Okuyama N. Effect of Changes in Mechanical Properties of Coke Matrix Caused by CO2 or H2O Gasification Reaction on the Strength of Lump Coke. ISIJ Int. 2021;61:119–128. doi: 10.2355/isijinternational.ISIJINT-2020-292. DOI

Yang H., Han Z., Hu J., He M. Defect and temperature effects on the mechanical properties of kaolinite: A molecular dynamics study. Clay Miner. 2019;54:153–159. doi: 10.1180/clm.2019.22. DOI

Berladir K.V., Budnik O.A., Dyadyura K.A., Svidersky V.A., Kravchenko Y.O. Physicochemical principles of polymer composite materials technology based on polytetrafluoroethylene. High Temp. Mater. Process. 2016;20:157–184. doi: 10.1615/HighTempMatProc.2016017875. DOI

Talamadupula K.K., Seidel G. Computational Micromechanics Investigation of Percolation and Effective Electro-Mechanical Properties of Carbon Nanotube/Polymer Nanocomposites using Stochastically Generated Realizations: Effects of Orientation and Waviness. Polymers. 2022;14:5094. doi: 10.3390/polym14235094. PubMed DOI PMC

Muhlestein M.B., Haberman M.R. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure. Proc. R. Soc. A. 2016;472:20160438. doi: 10.1098/rspa.2016.0438. PubMed DOI PMC

Yun J.-H., Jeon Y.-J., Kang M.-S. Prediction of Elastic Properties Using Micromechanics of Polypropylene Composites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers. Molecules. 2022;27:5752. doi: 10.3390/molecules27185752. PubMed DOI PMC

Galindo-Torres S.A., Scheuermann A., Mühlhaus H.B., Williams D.J. A micro-mechanical approach for the study of contact erosion. Acta Geotech. 2015;10:357–368. doi: 10.1007/s11440-013-0282-z. DOI

Fajardo J.I., Costa J., Cruz L.J., Paltán C.A., Santos J.D. Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites. Polymers. 2022;14:2627. doi: 10.3390/polym14132627. PubMed DOI PMC

Leon-Becerra J., González-Estrada O.A., Sánchez-Acevedo H. Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study. Polymers. 2022;14:3546. doi: 10.3390/polym14173546. PubMed DOI PMC

Mamache F.E., Mesbah A., Bian H., Zaïri F. Micromechanical Modeling of the Biaxial Deformation-Induced Phase Transformation in Polyethylene Terephthalate. Polymers. 2022;14:3028. doi: 10.3390/polym14153028. PubMed DOI PMC

Sayyidmousavi A., Fawaz Z. A micromechanical approach to the mechanical characterization of 3D-printed composites. Polym. Polym. Compos. 2022;30:1–7. doi: 10.1177/09673911221078481. DOI

Sharma A., Devi M. A Review on Multiscale Modelling and Simulation for Polymer Nanocomposites. Preprints. 2022:2022020213. doi: 10.20944/preprints202202.0213.v1. DOI

Pozovnyi O., Deineka A., Lisovenko D. Calculation of hydrostatic forces of multi-gap seals and its dependence on shaft displacement; Proceedings of the Advances in Design, Simulation and Manufacturing II, DSMIE 2019 (Lecture Notes in Mechanical Engineering); Lutsk, Ukraine. 11–14 June 2019.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...