Metabolomic Analysis of Microcystis aeruginosa After Exposure to the Algicide L-Lysine
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
41877336
National Natural Science Foundation of China
41971043
National Natural Science Foundation of China
42077122
National Natural Science Foundation of China
BK20200093
Natural Science Foundation of Jiangsu Province
PubMed
36512146
DOI
10.1007/s00128-022-03658-5
PII: 10.1007/s00128-022-03658-5
Knihovny.cz E-zdroje
- Klíčová slova
- Arginine metabolism, L-lysine, Metabolomic analysis, Microcystin, Microcystis aeruginosa, Ornithine-ammonia cycle,
- MeSH
- amoniak MeSH
- arginin chemie metabolismus MeSH
- citrulin metabolismus MeSH
- ekosystém MeSH
- herbicidy * metabolismus MeSH
- lidé MeSH
- lysin toxicita metabolismus MeSH
- Microcystis * metabolismus MeSH
- mikrocystiny metabolismus MeSH
- ornithin toxicita metabolismus MeSH
- sinice * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amoniak MeSH
- arginin MeSH
- citrulin MeSH
- herbicidy * MeSH
- lysin MeSH
- mikrocystiny MeSH
- ornithin MeSH
The widespread occurrence of cyanobacteria blooms damages the water ecosystem and threatens the safety of potable water and human health. Exogenous L-lysine significantly inhibits the growth of a dominant cyanobacteria Microcystis aeruginosa in freshwater. However, the molecular mechanism of how lysine inhibits the growth of M. aeruginosa is unclear. In this study, both non-target and target metabolomic analysis were performed to investigate the effects of algicide L-lysine. The results showed that 8 mg L- 1 lysine most likely disrupts the metabolism of amino acids, especially the arginine and proline metabolism. According to targeted amino acid metabolomics analysis, only 3 amino acids (L-arginine, ornithine, and citrulline), which belong to the ornithine-ammonia cycle (OAC) in arginine metabolic pathway, showed elevated levels. The intracellular concentrations of ornithine, citrulline, and arginine increased by 115%, 124%, and 19.4%, respectively. These results indicate that L-lysine may affect arginine metabolism and OAC to inhibit the growth of M. aeruginosa.
Green Economy Development Institute Nanjing University of Finance and Economics 210023 Nanjing China
School of Environment Nanjing Normal University 210023 Nanjing China
Zobrazit více v PubMed
Cai YP, Weng K, Guo Y, Peng J, Zhu ZJ (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575–1586 DOI
Dai R, Liu H, Qu J, Zhao X, Hou Y (2009) Effects of amino acids on microcystin production of the Microcystis aeruginosa. J Hazard Mater 161:730–736 DOI
de Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJ, Pereira MJ (2004) Microcystin-producing blooms-a serious global public health issue. Ecotoxicol Environ Saf 59:151–163 DOI
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483 DOI
Kaya K, Sano T (1996) Algicidal compounds in yeast extract as a component of microbial culture media. Phycologia 35:117–119 DOI
Khangulov SV, Sossong TM Jr, Ash DE, Dismukes GC (1998) L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Biochemistry 37:8539–8550 DOI
Kroeckel S, Dietz C, Schulz C, Susenbeth A (2015) Bioavailability of free lysine and protein-bound lysine from casein and fishmeal in juvenile turbot (Psetta maxima). Br J Nutr 113:718–727 DOI
Landsberg JH (2010) The Effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390 DOI
Li D, Wu N, Tang S, Su G, Li X, Zhang Y, Wang G, Zhang J, Liu H, Hecker M, Giesy JP, Yu H (2018) Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ Sci Eur 30:27 DOI
Lurling M, van Oosterhout F (2014) Effect of selected plant extracts and D- and L-lysine on the cyanobacterium Microcystis aeruginosa. Water 6:1807–1825 DOI
Paerl HW, Huisman J (2008) Climate. Blooms like it hot. Science 320:57–58 DOI
Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010 DOI
Paerl HW, Otten TG, Joyner AR (2016) Moving towards adaptive management of cyanotoxin-impaired water bodies. Microb Biotechnol 9:641–651 DOI
Sanchez-Baracaldo P, Cardona T (2020) On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol 225:1440–1446 DOI
Takamura Y, Yamada T, Kimoto A, Kanehama N, Tanaka T, Nakadaira S, Yagi O (2004) Growth inhibition of Microcystis Cyanobacteria by L-lysine and disappearance of natural Microcystis blooms with spraying. Microbes Environ 19:31–39 DOI
Tian L, Chen M, Ren C, Wang Y, Li L (2018) Anticyanobacterial effect of L-lysine on Microcystis aeruginosa. RSC Adv 8:21606–21612 DOI
Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71:6126–6133 DOI
Yamamoto Y, Kouchiwa T, Hodoki Y, Hotta K, Uchida H, Harada KI (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J Appl Phycol 10:391–397 DOI
Yan XC, Xu XG, Wang MY, Wang GX, Wu SJ, Li ZC, Sun H, Shi A, Yang YH (2017) Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective. Water Res 125:449–457 DOI
Zhang BH, Chen W, Li HQ, Yang JY, Zha DM, Duan YQ, Hozzein WN, Xiao M, Gao R, Li WJ (2016) L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074(T). Appl Microbiol Biotechnol 100:4627–4636 DOI
Zhang H, Liu Y, Nie X, Liu L, Hua Q, Zhao GP, Yang C (2018) The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase. Nat Chem Biol 14:575–581 DOI