Metabolomic Analysis of Microcystis aeruginosa After Exposure to the Algicide L-Lysine

. 2022 Dec 13 ; 110 (1) : 12. [epub] 20221213

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36512146

Grantová podpora
41877336 National Natural Science Foundation of China
41971043 National Natural Science Foundation of China
42077122 National Natural Science Foundation of China
BK20200093 Natural Science Foundation of Jiangsu Province

Odkazy

PubMed 36512146
DOI 10.1007/s00128-022-03658-5
PII: 10.1007/s00128-022-03658-5
Knihovny.cz E-zdroje

The widespread occurrence of cyanobacteria blooms damages the water ecosystem and threatens the safety of potable water and human health. Exogenous L-lysine significantly inhibits the growth of a dominant cyanobacteria Microcystis aeruginosa in freshwater. However, the molecular mechanism of how lysine inhibits the growth of M. aeruginosa is unclear. In this study, both non-target and target metabolomic analysis were performed to investigate the effects of algicide L-lysine. The results showed that 8 mg L- 1 lysine most likely disrupts the metabolism of amino acids, especially the arginine and proline metabolism. According to targeted amino acid metabolomics analysis, only 3 amino acids (L-arginine, ornithine, and citrulline), which belong to the ornithine-ammonia cycle (OAC) in arginine metabolic pathway, showed elevated levels. The intracellular concentrations of ornithine, citrulline, and arginine increased by 115%, 124%, and 19.4%, respectively. These results indicate that L-lysine may affect arginine metabolism and OAC to inhibit the growth of M. aeruginosa.

Zobrazit více v PubMed

Cai YP, Weng K, Guo Y, Peng J, Zhu ZJ (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575–1586 DOI

Dai R, Liu H, Qu J, Zhao X, Hou Y (2009) Effects of amino acids on microcystin production of the Microcystis aeruginosa. J Hazard Mater 161:730–736 DOI

de Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJ, Pereira MJ (2004) Microcystin-producing blooms-a serious global public health issue. Ecotoxicol Environ Saf 59:151–163 DOI

Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483 DOI

Kaya K, Sano T (1996) Algicidal compounds in yeast extract as a component of microbial culture media. Phycologia 35:117–119 DOI

Khangulov SV, Sossong TM Jr, Ash DE, Dismukes GC (1998) L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Biochemistry 37:8539–8550 DOI

Kroeckel S, Dietz C, Schulz C, Susenbeth A (2015) Bioavailability of free lysine and protein-bound lysine from casein and fishmeal in juvenile turbot (Psetta maxima). Br J Nutr 113:718–727 DOI

Landsberg JH (2010) The Effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390 DOI

Li D, Wu N, Tang S, Su G, Li X, Zhang Y, Wang G, Zhang J, Liu H, Hecker M, Giesy JP, Yu H (2018) Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ Sci Eur 30:27 DOI

Lurling M, van Oosterhout F (2014) Effect of selected plant extracts and D- and L-lysine on the cyanobacterium Microcystis aeruginosa. Water 6:1807–1825 DOI

Paerl HW, Huisman J (2008) Climate. Blooms like it hot. Science 320:57–58 DOI

Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010 DOI

Paerl HW, Otten TG, Joyner AR (2016) Moving towards adaptive management of cyanotoxin-impaired water bodies. Microb Biotechnol 9:641–651 DOI

Sanchez-Baracaldo P, Cardona T (2020) On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol 225:1440–1446 DOI

Takamura Y, Yamada T, Kimoto A, Kanehama N, Tanaka T, Nakadaira S, Yagi O (2004) Growth inhibition of Microcystis Cyanobacteria by L-lysine and disappearance of natural Microcystis blooms with spraying. Microbes Environ 19:31–39 DOI

Tian L, Chen M, Ren C, Wang Y, Li L (2018) Anticyanobacterial effect of L-lysine on Microcystis aeruginosa. RSC Adv 8:21606–21612 DOI

Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71:6126–6133 DOI

Yamamoto Y, Kouchiwa T, Hodoki Y, Hotta K, Uchida H, Harada KI (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J Appl Phycol 10:391–397 DOI

Yan XC, Xu XG, Wang MY, Wang GX, Wu SJ, Li ZC, Sun H, Shi A, Yang YH (2017) Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective. Water Res 125:449–457 DOI

Zhang BH, Chen W, Li HQ, Yang JY, Zha DM, Duan YQ, Hozzein WN, Xiao M, Gao R, Li WJ (2016) L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074(T). Appl Microbiol Biotechnol 100:4627–4636 DOI

Zhang H, Liu Y, Nie X, Liu L, Hua Q, Zhao GP, Yang C (2018) The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase. Nat Chem Biol 14:575–581 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...