Bias in sex ratios and polyandry rate in reproduction of Leptinotarsa decemlineata

. 2022 Dec 14 ; 12 (1) : 21637. [epub] 20221214

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36517541
Odkazy

PubMed 36517541
PubMed Central PMC9751100
DOI 10.1038/s41598-022-26177-z
PII: 10.1038/s41598-022-26177-z
Knihovny.cz E-zdroje

The Colorado potato beetle (CPB, Leptinotarsa decemlineata Slechtd.) is an invasive pest with economic importance worldwide. Sex ratios during egg-hatching and a frequency of polyandry in single-female families were analysed to clarify the reproduction strategy of CPB, which was still known only in fragments. 1296 just hatching 1st instar CPB larvae were collected from 19 single-female families, of which 13 were random families collected from potato fields and 6 were families produced by laboratory farming of naturally fertilised females. All larvae were analysed to detect a sex using a qPCR-based method and to detect polymorphisms in genotypes of 9 microsatellite (SSR) markers. The bias in sex ratio in favour of females was confirmed using linear mixed-effects model in both experimental groups of families: field collections (F = 36.39; P = 0.0001) and laboratory farming (F = 13.74; P = 0.0139). The analysis of diversity in microsatellites proved the polyandry in all progenies as 73% of analysed segregation patterns did not match with the patterns expected for full-sib progenies; on average per locus, 46% of allelic and 49.7% of genotype ratios showed irregular segregation. Both findings contribute toward understanding CPB success rate as an invasive species, as the preferential bearing of females with polyandry has a great potential to keep fitness of progenies, to maintain and operate population diversity, and to accelerate the reproduction of the pest.

Zobrazit více v PubMed

Blackmon H, Demuth JP. Coleoptera karyotype database. Coleopts. Bull. 2015;69:174–175. doi: 10.1649/0010-065X-69.1.174. DOI

Bachtrog D, et al. Sex determination: Why so many ways of doing it? PLoS Biol. 2014;12:e1001899. doi: 10.1371/journal.pbio.1001899. PubMed DOI PMC

Blackmon H, Ross L, Bachtrog D. Sex determination, sex chromosomes, and karyotype evolution in insects. J. Hered. 2017;108(1):78–93. doi: 10.1093/jhered/esw047. PubMed DOI PMC

Cook J. Sex determination in invertebrates. In: Hardy I, editor. Sex Ratios: Concepts and Research Methods. Cambridge University Press; 2002. pp. 178–194.

Entwistle PF. Inbreeding and arrhenotoky in the ambrosia beetle Xyleborus compactus (Eichh.) (Coleoptera: Scolytidae) Proc. R. Entomol. Soc. A. 1964;39:83–88.

Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 1999;53:71–102. doi: 10.1146/annurev.micro.53.1.71. PubMed DOI

Aikawa T, et al. Cytoplasmic incompatibility in the semivoltine longicorn beetle Acalolepta fraudatrix (Coleoptera: Cerambycidae) double infected with Wolbachia. PLoS ONE. 2022;17(1):e0261928. doi: 10.1371/journal.pone.0261928. PubMed DOI PMC

Fialho RF, Stevens L. Male-killing Wolbachia in a flour beetle. Proc. Biol. Sci. 2000;267(1451):1469–1473. doi: 10.1098/rspb.2000.1166. PubMed DOI PMC

Miyata M, et al. Wolbachia-induced meiotic drive and feminization is associated with an independent occurrence of selective mitochondrial sweep in a butterfly. Biol. Lett. 2017;13:015320170153. doi: 10.1098/rsbl.2017.0153. PubMed DOI PMC

Böcher JJ, Nachman G. Temperature and humidity responses of the arctic-alpine seed bug Nysius groenlandicus. Entomol. Exp. App. 2001;99:319–330. doi: 10.1046/j.1570-7458.2001.00831.x. DOI

Kvarnemo C, Ahnesjö I. The dynamics of operational sex ratios and competition for mates. Trends Ecol. Evol. 1996;11:404–408. doi: 10.1016/0169-5347(96)10056-2. PubMed DOI

Weir L, Grant J, Hutchings J. The influence of operational sex ratio on the intensity of competition for mates. Am. Nat. 2011;177:167–176. doi: 10.1086/657918. PubMed DOI

Pai A, Bernasconi G. Polyandry and female control: The red flour beetle Tribolium castaneum as a case study. J. Exp. Zool. B. Mol. Dev. Evol. 2008;310(2):148–159. doi: 10.1002/jez.b.21164. PubMed DOI

Arnqvist G, Nilsson T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 2000;60:145–164. doi: 10.1006/anbe.2000.1446. PubMed DOI

Fedina TY. Cryptic female choice during spermatophore transfer in Tribolium castaneum (Coleoptera: Tenebrionidae) J. Insect. Physiol. 2007;53(1):93–98. doi: 10.1016/j.jinsphys.2006.10.011. PubMed DOI

Firman RC, et al. Postmating female control: 20 years of cryptic female choice. Trends Ecol. Evol. 2017;32(5):368–382. doi: 10.1016/j.tree.2017.02.010. PubMed DOI PMC

Lewis SM, Jutkiewicz E. Sperm precedence and sperm storage in multiply mated red flour beetles. Behav. Ecol. Sociobiol. 1998;43(6):365–369. doi: 10.1007/s002650050503. DOI

Alyokhin A, Charles V, Giordanengo P. Insect Pests of Potato: Global Perspectives on Biology and Management. Academic Press; 2012.

Hsiao TH, Hsiao C. A chromosomal analysis of Leptinotarsa and Labidomera species (Coleoptera: Chrysomelidae) Genetica. 1983;60:139–150. doi: 10.1007/BF00127500. DOI

Roderick GK, et al. Sperm precedence in Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Temporal variation assessed by neutral markers. Ann. Entomol. Soc. Am. 2003;96(5):631–636. doi: 10.1603/0013-8746(2003)096[0631:SPICPB]2.0.CO;2. DOI

Krawczyk K, Szymańczyk M, Obrępalska-Stęplowska A. Prevalence of endosymbionts in Polish populations of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) J. Insect Sci. 2015;15(1):106. doi: 10.1093/jisesa/iev085. PubMed DOI PMC

Kajtoch Ł, Kotásková N. Current state of knowledge on Wolbachia infection among Coleoptera: A systematic review. PeerJ. 2018;6:e4471. doi: 10.7717/peerj.4471. PubMed DOI PMC

Sedláková V, et al. Detection of sex in adults and larvae of Leptinotarsa decemlineata on principle of copy number variation. Sci. Rep. 2022;12:4602. doi: 10.1038/s41598-022-08642-x. PubMed DOI PMC

Grapputo A. Development and characterization of microsatellite markers in the Colorado potato beetle, Leptinotarsa decemlineata. Mol. Ecol. Notes. 2006;6:1177–1179. doi: 10.1111/j.1471-8286.2006.01483.x. DOI

Chen H, et al. Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS ONE. 2010;5(8):e11963. doi: 10.1371/journal.pone.0011963. PubMed DOI PMC

Brownstein MJ, Carpten JD, Smith JR. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. Biotechniques. 1996;20(6):1004–1006. doi: 10.2144/96206st01. PubMed DOI

Peakall R, Smouse PE. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC

Peakall R, Smouse P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28(19):2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC

Bińkowski, J. & Miks, S. Gene-Calc [Computer software]. http://www.gene-calc.pl. (2018).

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017;82(13):1–26. doi: 10.18637/jss.v082.i13. DOI

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01. DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2022.

Vahl WK, et al. Female fertilization: Effects of sex-specific density and sex ratio determined experimentally for Colorado potato beetles and Drosophila fruit flies. PLoS ONE. 2013;8(4):e60381. doi: 10.1371/journal.pone.0060381. PubMed DOI PMC

Boman S. Ecological and genetic factors contributing to invasion success. The northern spread of the Colorado potato beetle (Leptinotarsa decemlineata) Jyväskylä Stud. Biol. Environ. Sci. 2008;194:53.

Rostant WG, et al. Sexual conflict maintains variation at an insecticide resistance locus. BMC Biol. 2015;13:34. doi: 10.1186/s12915-015-0143-3. PubMed DOI PMC

Hochachka PW, Somero GN. Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press; 2002.

Aryan A, et al. Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight. Proc. Natl. Acad. Sci. 2020;117(30):17702–17709. doi: 10.1073/pnas.2001132117. PubMed DOI PMC

Compton A, Tu Z. Natural and engineered sex ratio distortion in insects. Front. Ecol. Evol. 2022;10:884159. doi: 10.3389/fevo.2022.884159. PubMed DOI PMC

Schausberger P, et al. Low level of polyandry constrains phenotypic plasticity of male body size in mites. PLoS ONE. 2017;12(11):e0188924. doi: 10.1371/journal.pone.0188924. PubMed DOI PMC

Boiteau G. Sperm utilization and post-copulatory female-guarding in the Colorado potato beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 1988;47:183–187. doi: 10.1111/j.1570-7458.1988.tb01134.x. DOI

Alyokhin AV, Ferro DN. Electrophoretic confirmation of sperm mixing in mated Colorado potato beetles (Coleoptera: Chrysomelidae) Ann. Entomol. Soc. Am. 1999;92(2):230–235. doi: 10.1093/aesa/92.2.230. DOI

Arnaud LL. compétition spermatique chez les insectes: les stratégies d’assurance de la paternité et la préséance du sperme. Biotechnol. Agron. Soc. Environ. 1999;3(2):86–103.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...