Detection of sex in adults and larvae of Leptinotarsa decemlineata on principle of copy number variation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35301399
PubMed Central
PMC8931150
DOI
10.1038/s41598-022-08642-x
PII: 10.1038/s41598-022-08642-x
Knihovny.cz E-zdroje
- MeSH
- brouci * genetika MeSH
- larva genetika MeSH
- Solanum tuberosum * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Colorado MeSH
The identification of sex in larvae of insects is usually challenging or even impossible, while in adults the sexual dimorphism is usually evident. Here, we used copy number analysis to develop a method of sex detection in Colorado potato beetle (Leptinotarsa decemlineata), which has an X0 sex determination system. The X linked gene LdVssc and autosomal gene LdUBE3B were identified as appropriate target and reference loci, respectively. The copy numbers (CNV) of LdVssc in males and females were estimated using standard droplet digital PCR (ddPCR) and real-time PCR (qPCR). With both methods, CNVs were bimodally distributed (BAddPCR = 0.709 and BAqPCR = 0.683) with 100% ability to distinguish females from males. The use of qPCR-based sex detection in a broad collection of 448 random CPB adults showed a perfect association (Phi = 1.0, p < 0.05) with the true sexes of adults, with mean CNV in females of 2.032 (SD = 0.227) and 0.989 in males (SD = 0.147). In the collection of 50 random 4th instar larvae, 27 females and 23 males were identified, consistent with the expected 1:1 sex ratio (p = 0.689). The method is suitable for sexing in all stages of ontogenesis. The optimal cost-effective application of the method in large populations requires the DNA extraction using CTAB, the qPCR assay in one biological replicate and three technical replicates of each marker, and the use of one randomly chosen male per run to calibrate calculation of CNV.
Zobrazit více v PubMed
Mora C, et al. How many species are there on Earth and in the ocean? PLoS Biol. 2011;9(8):e1001127. doi: 10.1371/journal.pbio.1001127. PubMed DOI PMC
Jarne P, Auld JR. Animals mix it up too: The distribution of self-fertilization among hermaphroditic animals. Evolution. 2006;60(9):1816–1824. doi: 10.1111/j.0014-3820.2006.tb00525.x. PubMed DOI
Normark BB. The evolution of alternative genetic systems in insects. Annu. Rev. Entomol. 2003;48:397–423. doi: 10.1146/annurev.ento.48.091801.112703. PubMed DOI
Blackmon H, Ross L, Bachtrog D. Sex determination, sex chromosomes, and karyotype evolution in insects. J. Hered. 2017;108(1):78–93. doi: 10.1093/jhered/esw047. PubMed DOI PMC
Gempe T, Beye M. Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays. 2010;33:52–60. doi: 10.1002/bies.201000043. PubMed DOI PMC
Bull JJ. The Evolution of Sex Determining Mechanisms. Benjamin/Cummings Publishing Company; 1983.
Jaquiéry J, et al. Accelerated evolution of sex chromosomes in aphids, an X0 system. Mol. Biol. Evol. 2012;29(2):837–847. doi: 10.1093/molbev/msr252. PubMed DOI
Sawanth SK, et al. The autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects. J. Biosci. 2016;41(2):283–294. doi: 10.1007/s12038-016-9609-x. PubMed DOI
Graham P, Penn JKM, Schedl P. Masters change, slaves remain. BioEssays. 2003;25:1–4. doi: 10.1002/bies.10207. PubMed DOI
Blackmon H, Demuth JP. Genomic origins of insect sex chromosomes. Curr. Opin. Insect Sci. 2015;7:45–50. doi: 10.1016/j.cois.2014.12.003. PubMed DOI
Roderick GK, et al. Sperm precedence in Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Temporal variation assessed by neutral markers. Ann. Entomol. Soc. Am. 2003;96(5):631–636. doi: 10.1603/0013-8746(2003)096[0631:SPICPB]2.0.CO;2. DOI
Hsiao TH, Hsiao C. A chromosomal analysis of Leptinotarsa and Labidomera species (Coleoptera: Chrysomelidae) Genetica. 1983;60:139–150. doi: 10.1007/BF00127500. DOI
Petitpierre E, Segarra C, Yadav JS, Virkki N. Chromosome Numbers and Meioformulae of Chrysomelidae. In: Jolivet P, Petitpierre E, Hsiao TH, editors. Biology of Chrysomelidae. Springer; 1988. pp. 161–186.
Blackmon H, Demuth JP. Estimating tempo and mode of Y chromosome turnover: Explaining Y chromosome loss with the fragile Y hypothesis. Genetics. 2014;197:561–572. doi: 10.1534/genetics.114.164269. PubMed DOI PMC
Blackmon H, Demuth JP. The fragile Y hypothesis: Y-chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays. 2015;37:942–950. doi: 10.1002/bies.201500040. PubMed DOI
Khidhir AQS, Mustafa RA. Illustrate the morphologic characters of Colorado potato beetle, Leptinotarsa decemlineata say, 1824 (Coleoptera: Chrysomelidae) J. Entomol. Zool. Stud. 2018;6:456–462.
Ledón-Rettig CC, Zattara EE, Moczek AP. Asymmetric interactions between doublesex and tissue and sex-specific target genes mediate sexual dimorphism in beetles. Nat. Commun. 2017;8:14593. doi: 10.1038/ncomms14593. PubMed DOI PMC
Flaherty L, Régnière J, Sweeney J. Number of instars and sexual dimorphism of Tetropium fuscum (Coleoptera: Cerambycidae) larvae determined by maximum likelihood. Can. Entomol. 2012;144:720–726. doi: 10.4039/tce.2012.60. DOI
Moczek AP, Nijhout HF. A method for sexing final instar larvae of the genus Onthophagus Latreille (Coleoptera: Scarabaeidae) Coleopts. Bull. 2002;56(2):279–284. doi: 10.1649/0010-065X(2002)056[0279:AMFSFI]2.0.CO;2. DOI
Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat. Rev. Genet. 2006;7:85–97. doi: 10.1038/nrg1767. PubMed DOI
Hawthorne DJ. AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: Sex chromosomes and a pyrethroid-resistance candidate gene. Genetics. 2001;158(2):695–700. doi: 10.1093/genetics/158.2.695. PubMed DOI PMC
Itokawa K, et al. Highthroughput genotyping of a full voltage-gated sodium channel gene via genomic DNA using target capture sequencing and analytical pipeline MoNaS to discover novel insecticide resistance mutations. PLoS Neglect. Trop. D. 2019;13(11):e0007818. doi: 10.1371/journal.pntd.0007818. PubMed DOI PMC
Silva JJ, Scott JG. Conservation of the voltage-sensitive sodium channel protein within the Insecta. Insect Mol. Biol. 2020;29(1):9–18. doi: 10.1111/imb.12605. PubMed DOI
Kim HS, et al. BeetleBase in 2010: Revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res. 2010;2010(38):D437–442. doi: 10.1093/nar/gkp807. PubMed DOI PMC
Martins WFS, et al. Detection and quantitation of copy number variation in the voltage-gated sodium channel gene of the mosquito Culex quinquefasciatus. Sci. Rep. 2017;7:5821. doi: 10.1038/s41598-017-06080-8. PubMed DOI PMC
Chen H, et al. Evaluation of five methods for total dna extraction from western corn rootworm beetles. PLoS ONE. 2010;5(8):e11963. doi: 10.1371/journal.pone.0011963. PubMed DOI PMC
Milligan BG. Total DNA Isolation. In: Hoelzel AR, editor. Molecular Genetic Analysis of Population: A Practical Approach. Oxford University Press; 1998. pp. 29–64.
Rozen S, Skaletsky H. Primer3 on the WWW for General Users and for Biologist Programmers. In: Misener S, Krawetz SA, editors. Bioinformatics Methods and Protocols. Humana Press; 1999. pp. 365–386. PubMed
Larionov A, Krause A, Miller W. A standard curve-based method for relative real time PCR data processing. BMC Bioinformatics. 2005;6(1):1–16. doi: 10.1186/1471-2105-6-62. PubMed DOI PMC
Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36. doi: 10.1093/nar/30.9.e36. PubMed DOI PMC
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Zhang C, Mapes B, Soden B. Bimodality in tropical water vapour. Q. J. Roy. Meteor. Soc. 2003;129(594):2847–2866. doi: 10.1256/qj.02.166. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).
Svec D, et al. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessment. Biomol. Detect. Quantif. 2015;3:9–16. doi: 10.1016/j.bdq.2015.01.005. PubMed DOI PMC
Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 2002;29:23–39. doi: 10.1677/jme.0.0290023. PubMed DOI
Baker JR. Development and sexual dimorphism of larvae of the bee genus Coelioxys. J. Kansas Entomol. Soc. 1971;44(2):225–235.
Sánchez E, Castillo D, Liria J. Pupal shape and size dimorphism in Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) J. Threat. Taxa. 2017;9(6):10314–10319. doi: 10.11609/jott.3059.9.6.10314-10319. DOI
Ramya RS, Mohan M, Sunil J. A simple method for sexing live larvae of pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae) Anim. Biol. 2020;70:97–100. doi: 10.1163/15707563-20191136. DOI
Kim HJ, et al. Application of DNA-based genotyping techniques for the detection of kdr-like pyrethroid resistance in field populations of Colorado potato beetle. Pestic. Biochem. Phys. 2005;81:85–96. doi: 10.1016/j.pestbp.2004.10.002. DOI
Lee SH, et al. Molecular analysis of kdr-like resistance in a permethrin-resistant strain of Colorado potato beetle. Pestic. Biochem. Phys. 1999;63:63–75. doi: 10.1006/pest.1999.2395. DOI
Rinkevich FD. Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle Leptinotarsa decemlineata. Pestic. Biochem. Phys. 2012;104:192–200. doi: 10.1016/j.pestbp.2012.08.001. DOI
Martins AJ. Evidence for gene duplication in the voltage-gated sodium channel gene of Aedes aegypti. Evol. Med. Public Health. 2013;2013(1):148–160. doi: 10.1093/emph/eot012. PubMed DOI PMC