Investigation of genetic diversity and polyandry of Leptinotarsa decemlineata using X-linked microsatellite markers
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910270
Ministerstvo Zemědělství
SGS SV23-12-21360
Česká Zemědělská Univerzita v Praze
PubMed
38081876
PubMed Central
PMC10713635
DOI
10.1038/s41598-023-49002-7
PII: 10.1038/s41598-023-49002-7
Knihovny.cz E-zdroje
- MeSH
- brouci * genetika MeSH
- larva genetika MeSH
- lidé MeSH
- mutace MeSH
- polymorfismus genetický MeSH
- Solanum tuberosum * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A panel of X-linked microsatellite markers was newly designed using the data from a previous sequencing project available in NCBI and used for a study of the Colorado potato beetle (CPB, Leptinotarsa decemlineata) X-haplotype variability. The analysis of scaffolds 49 and 61 (newly identified as fragments of CPB chromosome X) found ten high-quality markers, which were arranged in two PCR multiplexes and evaluated in both 420 CPB adults, collected from 14 localities of Czechia and Slovakia, and 866 larvae from five single-female families from two more Czech localities. Length polymorphisms found in 6 loci have predicted 192 potential X-haplotypes, however, only 36 combinations were detected in the adult males (N = 189), and seven additional ones in the larvae. The X-haplotypes were also generally unevenly distributed; five of the most frequent haplotypes were detected in 55% of males, 19 repeating up to ten-times in 38.7% of males and the remained 12 occurred uniquely in 6.3% of males. Bulk analysis of X-haplotypes dissimilarity indicated seven haplotype groups diversified by mutations and recombinations. Two haplotypes showed a distinctive regional distribution, which indicates an east-west disruption of CPB migration probably caused by different environments of localities in the South Bohemia region and Vysocina region. On the contrary, the results indicate a south-north migration corridor alongside the Vltava River. In the single-female families, from 6 to 13 distinct paternal haplotypes were detected, which proved and quantified a frequented polyandry in CPB.
Zobrazit více v PubMed
Zhang JJ, et al. Genetic relationships of introduced Colorado potato beetle Leptinotarsa decemlineata populations in Xinjiang, China. Insect Sci. 2013;20:643–654. doi: 10.1111/j.1744-7917.2012.01565.x. PubMed DOI
Grapputo A, et al. The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol. Ecol. 2005;14:4207–4219. doi: 10.1111/j.1365-294X.2005.02740.x. PubMed DOI
Hare DJ. Ecology and management of the Colorado potato beetle. Annu. Rev. Entomol. 1990;35:81–100. doi: 10.1146/annurev.en.35.010190.000501. DOI
Sakai AK, et al. The population biology of invasive species. Ann. Rev. Ecol. Syst. 2001;32:305–332. doi: 10.1146/annurev.ecolsys.32.081501.114037. DOI
Barrett, S. CH. & Kohn, J. R. Genetic and evolutionary consequences of small population size plants: implications for conservation in Genetics and Conservation of Rare Plants (eds Falk, D. A. & Holsinger, K. E.) 3–30 (Oxford University Press, 1991).
Maharijaya A, Vosman B. Managing the Colorado potato beetle; the need for resistance breeding. Euphytica. 2015;204:487–501. doi: 10.1007/s10681-015-1467-3. DOI
Alyokhin AV, et al. Colorado potato beetle resistance to insecticides. Am. J. Potato Res. 2008;85:395–413. doi: 10.1007/s12230-008-9052-0. DOI
Hsiao TH, Hsiao C. A chromosomal analysis of Leptinotarsa and Labidomera species (Coleoptera: Chrysomelidae) Genetica. 1983;60:139–150. doi: 10.1007/BF00127500. DOI
Blackmon H, Demuth JP. Genomic origins of insect sex chromosomes. Curr. Opin. Insect Sci. 2015;7:45–50. doi: 10.1016/j.cois.2014.12.003. PubMed DOI
Petitpierre E. Cytogenetics, cytotaxonomy and chromosomal evolution of Chrysomelinae revisited (Coleoptera, Chrysomelidae) ZooKeys. 2011;157:67–79. doi: 10.3897/zookeys.157.1339. PubMed DOI PMC
Roderick GK, et al. Sperm precedence in Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Temporal variation assessed by neutral markers. Ann. Entomol. Soc. Am. 2003;96(5):631–636. doi: 10.1603/0013-8746(2003)096[0631:SPICPB]2.0.CO;2. DOI
Alyokhin AV, Ferro DN. Electrophoretic confirmation of sperm mixing in mated Colorado potato beetles (Coleoptera: Chrysomelidae) Ann. Entomol. Soc. Am. 1999;92:230–235. doi: 10.1093/aesa/92.2.230. DOI
Grapputo A. Development and characterization of microsatellite markers in the Colorado potato beetle, Leptinotarsa decemlineata. Mol. Ecol. Notes. 2006;6:1177–1179. doi: 10.1111/j.1471-8286.2006.01483.x. DOI
Yang FY, et al. Genetic structure of the invasive Colorado potato beetle Leptinotarsa decemlineata populations in China. J. Integr. Agr. 2020;19(2):350–359. doi: 10.1016/S2095-3119(19)62600-6. DOI
Schoville SD, et al. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Sci. Rep. 2018;8:1931. doi: 10.1038/s41598-018-20154-1. PubMed DOI PMC
Yan J, et al. Chromosome-level genome assembly of the Colorado potato beetle, Leptinotarsa decemlineata. Sci. Data. 2023;10:36. doi: 10.1038/s41597-023-01950-5. PubMed DOI PMC
Zichová T, et al. Detection of organophosphate and pyrethroid resistance alleles in Czech Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) populations by molecular methods. Pest Manag. Sci. 2010;66:853–860. doi: 10.1002/ps.1952. PubMed DOI
Kim HJ, et al. Application of DNA-based genotyping techniques for the detection of kdr-like pyrethroid resistance in field populations of Colorado potato beetle. Pestic. Biochem. Phys. 2005;81:85–96. doi: 10.1016/j.pestbp.2004.10.002. DOI
Hawthorne DJ. AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: Sex chromosomes and a pyrethroid-resistance candidate gene. Genetics. 2001;158(2):695–700. doi: 10.1093/genetics/158.2.695. PubMed DOI PMC
Sedláková V, et al. Detection of sex in adults and larvae of Leptinotarsa decemlineata on principle of copy number variation. Sci. Rep. 2022;12:4602. doi: 10.1038/s41598-022-08642-x. PubMed DOI PMC
Sedláková V, et al. Bias in sex ratios and polyandry rate in reproduction of Leptinotarsa decemlineata. Sci. Rep. 2022;12:21637. doi: 10.1038/s41598-022-26177-z. PubMed DOI PMC
Khidhir AQS, Mustafa RA. Illustrate the morphologic characters of Colorado potato beetle, Leptinotarsa decemlineata say, 1824 (Coleoptera: Chrysomelidae) J. Entomol. Zool. Stud. 2018;6:456–462.
i5K Consortium. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J. Hered.104(5), 595–600 (2013). PubMed PMC
Richards S, et al. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452(7190):949–955. doi: 10.1038/nature06784. PubMed DOI
Zhang Z, et al. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000;7(1–2):203–214. doi: 10.1089/10665270050081478. PubMed DOI
Wang X, Wang L. GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front. Plant Sci. 2016;7:1350. PubMed PMC
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–1291. doi: 10.1093/bioinformatics/btm091. PubMed DOI
Untergasser A, et al. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes6, 288–295 (2006). PubMed PMC
Peakall, R. & Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics28(19), 2537–2539 (2012). PubMed PMC
Bińkowski, J. & Miks, S. Gene-Calc [Computer software]. Available from: www.gene-calc.pl. (2018).
Piry, S. et al. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered.90(4), 502–503 (1999).
Perrier, X. & Jacquemoud-Collet, J. P. DARwin software [Computer software]. Available from: http://darwin.cirad.fr. (2006).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).
Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999;41:95–98.
Luikart G, et al. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 1998;7:963–974. doi: 10.1046/j.1365-294x.1998.00414.x. PubMed DOI
Rasocha, V., Hausvater, E. & Doležal, P. Harmful agents of potato: abionoses, diseases, pests (Potato Research Institute Havlíčkův Brod Ltd., 2008).
Rattner BP, Meller VH. Drosophila male-specific lethal 2 protein controls sex-specific expression of the roX genes. Genetics. 2004;166(4):1825–1832. doi: 10.1093/genetics/166.4.1825. PubMed DOI PMC
Kocmánková E, et al. Estimating the impact of climate change on the occurrence of selected pests in the Central European region. Clim. Res. 2010;44:95–105. doi: 10.3354/cr00905. DOI
Okada K, et al. Polyandry and fitness in female horned flour beetles, Gnatocerus cornutus. Anim. Behav. 2015;106:11–16. doi: 10.1016/j.anbehav.2015.05.008. DOI
Boiteau G. Sperm utilization and post-copulatory female-guarding in the Colorado potato beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 1988;47:183–187. doi: 10.1111/j.1570-7458.1988.tb01134.x. DOI