Active immunotherapy reduces NOTCH3 deposition in brain capillaries in a CADASIL mouse model

. 2023 Feb 08 ; 15 (2) : e16556. [epub] 20221216

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36524456

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic form of familial small vessel disease; no preventive or curative therapy is available. CADASIL is caused by mutations in the NOTCH3 gene, resulting in a mutated NOTCH3 receptor, with aggregation of the NOTCH3 extracellular domain (ECD) around vascular smooth muscle cells. In this study, we have developed a novel active immunization therapy specifically targeting CADASIL-like aggregated NOTCH3 ECD. Immunizing CADASIL TgN3R182C150 mice with aggregates composed of CADASIL-R133C mutated and wild-type EGF1-5 repeats for a total of 4 months resulted in a marked reduction (38-48%) in NOTCH3 deposition around brain capillaries, increased microglia activation and lowered serum levels of NOTCH3 ECD. Active immunization did not impact body weight, general behavior, the number and integrity of vascular smooth muscle cells in the retina, neuronal survival, or inflammation or the renal system, suggesting that the therapy is tolerable. This is the first therapeutic study reporting a successful reduction of NOTCH3 accumulation in a CADASIL mouse model supporting further development towards clinical application for the benefit of CADASIL patients.

Zobrazit více v PubMed

Alpaugh M, Cicchetti F (2019) A brief history of antibody‐based therapy. Neurobiol Dis 130: 104504 PubMed

Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138: 3593–3612 PubMed

Boulay AC, Saubamea B, Decleves X, Cohen‐Salmon M (2015) Purification of mouse brain vessels. J Vis Exp e53208 PubMed PMC

Budd Haeberlein S, O'Gorman J, Chiao P, Bussiere T, von Rosenstiel P, Tian Y, Zhu Y, von Hehn C, Gheuens S, Skordos L et al (2017) Clinical development of aducanumab, an anti‐Abeta human monoclonal antibody being investigated for the treatment of early Alzheimer's disease. J Prev Alzheimers Dis 4: 255–263 PubMed

Capone C, Cognat E, Ghezali L, Baron‐Menguy C, Aubin D, Mesnard L, Stohr H, Domenga‐Denier V, Nelson MT, Joutel A (2016) Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice. Ann Neurol 79: 387–403 PubMed PMC

Chabriat H, Joutel A, Dichgans M, Tournier‐Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol 8: 643–653 PubMed

Coupland K, Lendahl U, Karlstrom H (2018) Role of NOTCH3 mutations in the cerebral small vessel disease cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 49: 2793–2800 PubMed

DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid‐beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295: 2264–2267 PubMed

Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, Hole JT, Forster BM, McDonnell PC, Liu F et al (2012) A plaque‐specific antibody clears existing beta‐amyloid plaques in Alzheimer's disease mice. Neuron 76: 908–920 PubMed

Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, Kremmer E, Haffner C, Giese A, Dichgans M et al (2011) Co‐aggregate formation of CADASIL‐mutant NOTCH3: a single‐particle analysis. Hum Mol Genet 20: 3256–3265 PubMed

Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10: 1055–1063 PubMed

Georgievska B, Gustavsson S, Lundkvist J, Neelissen J, Eketjall S, Ramberg V, Bueters T, Agerman K, Jureus A, Svensson S et al (2015) Revisiting the peripheral sink hypothesis: inhibiting BACE1 activity in the periphery does not alter beta‐amyloid levels in the CNS. J Neurochem 132: 477–486 PubMed

Ghezali L, Capone C, Baron‐Menguy C, Ratelade J, Christensen S, Ostergaard Pedersen L, Domenga‐Denier V, Pedersen JT, Joutel A (2018) Notch3(ECD) immunotherapy improves cerebrovascular responses in CADASIL mice. Ann Neurol 84: 246–259 PubMed

Golde TE, Das P, Levites Y (2009) Quantitative and mechanistic studies of Abeta immunotherapy. CNS Neurol Disord Drug Targets 8: 31–49 PubMed

Gravesteijn G, Munting LP, Overzier M, Mulder AA, Hegeman I, Derieppe M, Koster AJ, van Duinen SG, Meijer OC, Aartsma‐Rus A et al (2020) Progression and classification of granular osmiophilic material (GOM) deposits in functionally characterized human NOTCH3 transgenic mice. Transl Stroke Res 11: 517–527 PubMed PMC

Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Raschperger E, Mae MA, Jin S, Betsholtz C, Lendahl U (2015) Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol 35: 409–420 PubMed

Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, Hager K, Andreasen N, Scarpini E, Liu‐Seifert H et al (2018) Trial of solanezumab for mild dementia due to Alzheimer's disease. N Engl J Med 378: 321–330 PubMed

Joutel A (2020) Prospects for diminishing the impact of nonamyloid small‐vessel diseases of the brain. Annu Rev Pharmacol Toxicol 60: 437–456 PubMed

Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E et al (1996) Notch3 mutations in CADASIL, a hereditary adult‐onset condition causing stroke and dementia. Nature 383: 707–710 PubMed

Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, Domenga V, Cecillon M, Vahedi K, Ducros A et al (2001) Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet 358: 2049–2051 PubMed

Joutel A, Monet‐Lepretre M, Gosele C, Baron‐Menguy C, Hammes A, Schmidt S, Lemaire‐Carrette B, Domenga V, Schedl A, Lacombe P et al (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 120: 433–445 PubMed PMC

Karlstrom H, Beatus P, Dannaeus K, Chapman G, Lendahl U, Lundkvist J (2002) A CADASIL‐mutated Notch 3 receptor exhibits impaired intracellular trafficking and maturation but normal ligand‐induced signaling. Proc Natl Acad Sci USA 99: 17119–17124 PubMed PMC

Knopman DS, Jones DT, Greicius MD (2021) Failure to demonstrate efficacy of aducanumab: an analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement 17: 696–701 PubMed

Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M (2014) First‐in‐man tau vaccine targeting structural determinants essential for pathological tau‐tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer's disease model. Alzheimers Res Ther 6: 44 PubMed PMC

Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G et al (2008) Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem 283: 8046–8054 PubMed

Machuca‐Parra AI, Bigger‐Allen AA, Sanchez AV, Boutabla A, Cardona‐Velez J, Amarnani D, Saint‐Geniez M, Siebel CW, Kim LA, D'Amore PA et al (2017) Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL. J Exp Med 214: 2271–2282 PubMed PMC

Matthes F, Matuskova H, Arkelius K, Ansar S, Lundgaard I, Meissner A (2021) An improved method for physical separation of cerebral vasculature and parenchyma enables detection of blood‐brain‐barrier dysfunction. NeuroSci 2: 59–74

Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, Shcherbinin S, Sparks J, Sims JR, Brys M et al (2021) Donanemab in early Alzheimer's disease. N Engl J Med 384: 1691–1704 PubMed

Monet‐Lepretre M, Haddad I, Baron‐Menguy C, Fouillot‐Panchal M, Riani M, Domenga‐Denier V, Dussaule C, Cognat E, Vinh J, Joutel A (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136: 1830–1845 PubMed PMC

Novak P, Zilka N, Zilkova M, Kovacech B, Skrabana R, Ondrus M, Fialova L, Kontsekova E, Otto M, Novak M (2019) AADvac1, an active immunotherapy for Alzheimer's disease and non Alzheimer tauopathies: an overview of preclinical and clinical development. J Prev Alzheimers Dis 6: 63–69 PubMed

Oliveira DV, Svensson J, Zhong X, Biverstal H, Chen G, Karlstrom H (2022) Molecular chaperone BRICHOS inhibits CADASIL‐mutated NOTCH3 aggregation in vitro. Front Mol Biosci 9: 812808 PubMed PMC

Opherk C, Duering M, Peters N, Karpinska A, Rosner S, Schneider E, Bader B, Giese A, Dichgans M (2009) CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum Mol Genet 18: 2761–2767 PubMed

Primo V, Graham M, Bigger‐Allen AA, Chick JM, Ospina C, Quiroz YT, Manent J, Gygi SP, Lopera F, D'Amore PA et al (2016) Blood biomarkers in a mouse model of CADASIL. Brain Res 1644: 118–126 PubMed

Rodig SJ (2021) Preparing paraffin tissue sections for staining. Cold Spring Harb Protoc 2021: pdb.prot099663 PubMed

Rogers J, Strohmeyer R, Kovelowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40: 260–269 PubMed

Rosenberg RN, Lambracht‐Washington D (2020) Active immunotherapy to prevent Alzheimer disease‐a DNA amyloid beta 1‐42 trimer vaccine. JAMA Neurol 77: 289–290 PubMed

Rutten JW, Haan J, Terwindt GM, van Duinen SG, Boon EM, Lesnik Oberstein SA (2014) Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev Mol Diagn 14: 593–603 PubMed

Rutten JW, Klever RR, Hegeman IM, Poole DS, Dauwerse HG, Broos LA, Breukel C, Aartsma‐Rus AM, Verbeek JS, van der Weerd L et al (2015) The NOTCH3 score: a pre‐clinical CADASIL biomarker in a novel human genomic NOTCH3 transgenic mouse model with early progressive vascular NOTCH3 accumulation. Acta Neuropathol Commun 3: 89 PubMed PMC

Rutten JW, Dauwerse HG, Gravesteijn G, van Belzen MJ, van der Grond J, Polke JM, Bernal‐Quiros M, Lesnik Oberstein SA (2016) Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol 3: 844–853 PubMed PMC

Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open‐source platform for biological‐image analysis. Nat Methods 9: 676–682 PubMed PMC

Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y et al (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 537: 50–56 PubMed

Shrivastava AN, Aperia A, Melki R, Triller A (2017) Physico‐pathologic mechanisms involved in neurodegeneration: misfolded protein‐plasma membrane interactions. Neuron 95: 33–50 PubMed

Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97: 1235–1294 PubMed

Tolar M, Abushakra S, Hey JA, Porsteinsson A, Sabbagh M (2020) Aducanumab, gantenerumab, BAN2401, and ALZ‐801‐the first wave of amyloid‐targeting drugs for Alzheimer's disease with potential for near term approval. Alzheimers Res Ther 12: 95 PubMed PMC

Vandenberghe R, Riviere ME, Caputo A, Sovago J, Maguire RP, Farlow M, Marotta G, Sanchez‐Valle R, Scheltens P, Ryan JM et al (2017) Active Abeta immunotherapy CAD106 in Alzheimer's disease: a phase 2b study. Alzheimers Dement (N Y) 3: 10–22 PubMed PMC

Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554: 475–480 PubMed

Yamamoto Y, Craggs LJ, Watanabe A, Booth T, Attems J, Low RW, Oakley AE, Kalaria RN (2013) Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J Neuropathol Exp Neurol 72: 416–431 PubMed

Zhang Y, Lee DH (2011) Sink hypothesis and therapeutic strategies for attenuating Abeta levels. Neuroscientist 17: 163–173 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...