NR4A3 fusions characterize a distinctive peritoneal mesothelial neoplasm of uncertain biological potential with pure adenomatoid/microcystic morphology
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
36524687
DOI
10.1002/gcc.23118
Knihovny.cz E-resources
- Keywords
- EWSR1, NR4A3, adenomatoid tumor, gene fusion, microcystic, peritoneal mesothelioma,
- MeSH
- Adenoma * MeSH
- DNA-Binding Proteins genetics MeSH
- Adult MeSH
- Gene Fusion MeSH
- Middle Aged MeSH
- Humans MeSH
- Mesentery pathology MeSH
- Mesothelioma * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Peritoneal Neoplasms * genetics pathology MeSH
- Cell Cycle Proteins genetics MeSH
- Receptors, Thyroid Hormone genetics MeSH
- Repressor Proteins genetics MeSH
- Aged MeSH
- Receptors, Steroid * genetics MeSH
- Trans-Activators genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- CITED2 protein, human MeSH Browser
- DNA-Binding Proteins MeSH
- Biomarkers, Tumor MeSH
- NIPBL protein, human MeSH Browser
- NR4A3 protein, human MeSH Browser
- Cell Cycle Proteins MeSH
- Receptors, Thyroid Hormone MeSH
- Repressor Proteins MeSH
- Receptors, Steroid * MeSH
- Trans-Activators MeSH
A focal adenomatoid-microcystic pattern is not uncommon in peritoneal mesothelioma, but tumors composed almost exclusively of this pattern are distinctly rare and have not been well characterized. A small subset of mesotheliomas (mostly in children and young adults) are characterized by gene fusions including EWSR1/FUS::ATF1, EWSR1::YY1, and NTRK and ALK rearrangements, and often have epithelioid morphology. Herein, we describe five peritoneal mesothelial neoplasms (identified via molecular screening of seven histologically similar tumors) that are pure adenomatoid/microcystic in morphology and unified by the presence of an NR4A3 fusion. Patients were three males and two females aged 31-70 years (median, 40 years). Three presented with multifocal/diffuse and two with a localized disease. The size of the individual lesions ranged from 1.5 to 8 cm (median, 4.7). The unifocal lesions originated in the small bowel mesentery and the mesosigmoid. Treatment included surgery, either alone (three) or combined with hyperthermic intraperitoneal chemotherapy (two), and neoadjuvant or adjuvant chemotherapy (one case each). At the last follow-up (6-13 months), all five patients were alive and disease-free. All tumors were morphologically similar, characterized by extensive sieve-like microcystic growth with bland-looking flattened cells lining variably sized microcystic spaces and lacked a conventional epithelioid or sarcomatoid component. Immunohistochemistry confirmed mesothelial differentiation, but most cases showed limited expression of D2-40 and calretinin. Targeted RNA sequencing revealed an NR4A3 fusion (fusion partners were EWSR1 in three cases and CITED2 and NIPBL in one case each). The nosology and behavior of this morphomolecularly defined novel peritoneal mesothelial neoplasm of uncertain biological potential and its distinction from adenomatoid variants of conventional mesothelioma merit further delineation as more cases become recognized.
Department of Pathology Charles University Faculty of Medicine in Plzen Pilsen Czech Republic
Department of Pathology Massachusetts General Hospital Boston Massachusetts USA
Diagnostic and Research Institute of Pathology Medical University of Graz Graz Austria
See more in PubMed
Dacic S. Pleural mesothelioma classification-update and challenges. Mod Pathol. 2022;35(Suppl 1):51-56.
Husain AN, Colby TV, Ordóñez NG, et al. Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142:89-108.
Baker PM, Clement PB, Young RH. Malignant peritoneal mesothelioma in women: a study of 75 cases with emphasis on their morphologic spectrum and differential diagnosis. Am J Clin Pathol. 2005;123:724-737.
Pavlisko EN, Liu B, Green C, Sporn TA, Roggli VL. Malignant diffuse mesothelioma in women: a study of 354 cases. Am J Surg Pathol. 2020;44:293-304.
Malpica A, Euscher ED, Marques-Piubelli ML, et al. Localized malignant peritoneal mesothelioma (LMPeM) in women: a clinicopathologic study of 18 cases. Am J Surg Pathol. 2022;46:1352-1363.
Bueno R, De Rienzo A, Dong L, et al. Second generation sequencing of the mesothelioma tumor genome. PLoS One. 2010;5:e10612.
Miyanaga A, Masuda M, Tsuta K, et al. Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing. J Thorac Oncol. 2015;10:844-851.
Tranchant R, Quetel L, Tallet A, et al. Co-occurring mutations of tumor suppressor genes, LATS2 and NF2, in malignant pleural mesothelioma. Clin Cancer Res. 2017;15(23):3191-3202.
Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407-416.
Hmeljak J, Sanchez-Vega F, Hoadley KA, et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 2018;8:1548-1565.
Alakus H, Yost SE, Woo B, et al. BAP1 mutation is a frequent somatic event in peritoneal malignant mesothelioma. J Transl Med. 2015;13:122.
Leblay N, Leprêtre F, Le Stang N, et al. BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. J Thorac Oncol. 2017;12:724-733.
Joseph NM, Chen YY, Nasr A, et al. Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Mod Pathol. 2017;30:246-254.
Pilarski R, Carlo MI, Cebulla C, Abdel-Rahman M. In: Adam MP, Everman DB, Mirzaa GM, et al., eds. BAP1 Tumor Predisposition Syndrome. GeneReviews® [Internet]. University of Washington, Seattle; 2016 Oct 13 [updated 2022 Mar 24]:1993-2022.
Carbone M, Pass HI, Ak G, et al. Medical and surgical care of patients with mesothelioma and their relatives carrying germline BAP1 mutations. J Thorac Oncol. 2022;17:873-889.
Desmeules P, Joubert P, Zhang L, et al. A subset of malignant mesotheliomas in young adults are associated with recurrent EWSR1/FUS-ATF1 fusions. Am J Surg Pathol. 2017;41:980-988.
Ke H, Gill AJ, McKenzie C, et al. Malignant peritoneal mesothelioma with EWSR1-ATF1 fusion: a case report. JTO Clin Res Rep. 2021;2:100236.
Ren H, Rassekh SR, Lacson A, et al. Malignant mesothelioma with EWSR1-ATF1 fusion in two adolescent male patients. Pediatr Dev Pathol. 2021;24:570-574.
Hung YP, Dong F, Watkins JC, et al. Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 2018;4:235-238.
Mian I, Abdullaev Z, Morrow B, et al. Anaplastic lymphoma kinase gene rearrangement in children and young adults with mesothelioma. J Thorac Oncol. 2020;15:457-461.
Argani P, Lian DWQ, Agaimy A, et al. Pediatric mesothelioma with ALK fusions: a molecular and pathologic study of 5 cases. Am J Surg Pathol. 2021;45:653-661.
Panagopoulos I, Thorsen J, Gorunova L, et al. RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer. 2013;52:733-740.
Dermawan JK, Torrence D, Lee CH, et al. EWSR1::YY1 fusion positive peritoneal epithelioid mesothelioma harbors mesothelioma epigenetic signature: report of 3 cases in support of an emerging entity. Genes Chromosomes Cancer. 2022;61:592-602.
Leal JL, Peters G, Szaumkessel M, et al. NTRK and ALK rearrangements in malignant pleural mesothelioma, pulmonary neuroendocrine tumours and non-small cell lung cancer. Lung Cancer. 2020;146:154-159.
Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-26.
Hung YP, Fisch AS, Diaz-Perez JA, et al. Identification of EWSR1-NFATC2 fusion in simple bone cysts. Histopathology. 2021;78:849-856.
Dagogo-Jack I, Madison RW, Lennerz JK, et al. Molecular characterization of mesothelioma: impact of histologic type and site of origin on molecular landscape. JCO Precis Oncol. 2022;6:e2100422.
Ohkura N, Hijikuro M, Yamamoto A, Miki K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun. 1994;205:1959-1965.
Ohkura N, Yaguchi H, Tsukada T, Yamaguchi K. The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem. 2002;277:535-543.
Schmitt AD, Hu M, Jung I, et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 2016;17:2042-2059.
Kurakula K, Koenis DS, van Tiel CM, de Vries CJ. NR4A nuclear receptors are orphans but not lonesome. Biochim Biophys Acta. 2014;1843:2543-2555.
Beard JA, Tenga A, Chen T. The interplay of NR4A receptors and the oncogene-tumor suppressor networks in cancer. Cell Signal. 2015;27:257-266.
Mullican SE, Zhang S, Konopleva M, et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med. 2007;13:730-735.
Martínez-González J, Rius J, Castelló A, Cases-Langhoff C, Badimon L. Neuron-derived orphan receptor-1 (NOR-1) modulates vascular smooth muscle cell proliferation. Circ Res. 2003;92:96-103.
Filion C, Motoi T, Olshen AB, et al. The EWSR1/NR4A3 fusion protein of extraskeletal myxoid chondrosarcoma activates the PPARG nuclear receptor gene. J Pathol. 2009;217:83-93.
Antonescu CR, Argani P, Erlandson RA, Healey JH, Ladanyi M, Huvos AG. Skeletal and extraskeletal myxoid chondrosarcoma: a comparative clinicopathologic, ultrastructural, and molecular study. Cancer. 1998;83:1504-1521.
Agaram NP, Zhang L, Sung YS, Singer S, Antonescu CR. Extraskeletal myxoid chondrosarcoma with non-EWSR1-NR4A3 variant fusions correlate with rhabdoid phenotype and high-grade morphology. Hum Pathol. 2014;45:1084-1091.
Broehm CJ, Wu J, Gullapalli RR, Bocklage T. Extraskeletal myxoid chondrosarcoma with a t(9;16)(q22;p112) resulting in a NR4A3-FUS fusion. Cancer Genet. 2014;207:276-280.
Urbini M, Astolfi A, Pantaleo MA, et al. HSPA8 as a novel fusion partner of NR4A3 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 2017;56:582-586.
Wei S, Pei J, von Mehren M, Abraham JA, Patchefsky AS, Cooper HS. SMARCA2-NR4A3 is a novel fusion gene of extraskeletal myxoid chondrosarcoma identified by RNA next-generation sequencing. Genes Chromosomes Cancer. 2021;60:709-712.
Ngo C, Verret B, Vibert J, et al. A novel fusion variant LSM14A::NR4A3 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 2022;62(1):52-56.
Haller F, Bieg M, Will R, et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat Commun. 2019;10:368.
Haller F, Skálová A, Ihrler S, et al. Nuclear NR4A3 immunostaining is a specific and sensitive novel marker for Acinic cell carcinoma of the salivary glands. Am J Surg Pathol. 2019;43:1264-1272.
Vargas AC, Maclean FM, Bonar F, Mahar A, Gill AJ. NR4A3 immunohistochemistry lacks sensitivity for the diagnosis of extraskeletal myxoid chondrosarcoma. Am J Surg Pathol. 2019;43:1726-1728.
Leung MK, Jones T, Michels CL, Livingston DM, Bhattacharya S. Molecular cloning and chromosomal localization of the human CITED2 gene encoding p35srj/Mrg1. Genomics. 1999;61:307-313.
Alaggio R, Zhang L, Sung YS, et al. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol. 2016;40:224-235.
Gao D, Zhu B, Cao X, Zhang M, Wang X. Roles of NIPBL in maintenance of genome stability. Semin Cell Dev Biol. 2019;90:181-186.
de Braekeleer E, Auffret R, García JR, et al. Identification of NIPBL, a new ETV6 partner gene in t(5;12) (p13;p13)-associated acute megakaryoblastic leukemia. Leuk Lymphoma. 2013;54:423-424.
Vougiouklakis T, Shen G, Feng X, Hoda ST, Jour G. Molecular profiling of atypical tenosynovial giant cell tumors reveals novel non-CSF1 fusions. Cancers (Basel). 2019;12:100.
Argani P, Palsgrove DN, Anders RA, et al. A novel NIPBL-NACC1 gene fusion is characteristic of the cholangioblastic variant of intrahepatic cholangiocarcinoma. Am J Surg Pathol. 2021;45:1550-1560.
González IA, Linn RL, Wilkins BJ. Solid-tubulocystic variant of intrahepatic cholangiocarcinoma: report of a pediatric case with molecular characterization. Pediatr Dev Pathol. 2022;25(6):661-667.
Arrossi AV, Lin E, Rice D, Moran CA. Histologic assessment and prognostic factors of malignant pleural mesothelioma treated with extrapleural pneumonectomy. Am J Clin Pathol. 2008;130:754-764.
Weissferdt A, Kalhor N, Suster S. Malignant mesothelioma with prominent adenomatoid features: a clinicopathologic and immunohistochemical study of 10 cases. Ann Diagn Pathol. 2011;15:25-29.
Erber R, Warth A, Muley T, Hartmann A, Herpel E, Agaimy A. BAP1 loss is useful adjunct to distinguish malignant mesothelioma including the adenomatoid-like variant from benign adenomatoid tumors. Appl Immunohistochem Mol Morphol. 2019;28:67-73.
Umezu H, Kuwata K, Ebe Y, et al. Microcystic variant of localized malignant mesothelioma accompanying an adenomatoid tumor-like lesion. Pathol Int. 2002;52:416-422.
Hayes SJ, Clark P, Mathias R, Formela L, Vickers J, Armstrong GR. Multiple adenomatoid tumours in the liver and peritoneum. J Clin Pathol. 2007;60:722-724.
Yeh CJ, Chuang WY, Chou HH, Jung SM, Hsueh S. Multiple extragenital adenomatoid tumors in the mesocolon and omentum. APMIS. 2008;116:1016-1019.
Ko HM, Kamil ZS, Geddie WR. Microcystic variant mesothelioma presenting as a localized paraspinal mass. Cytojournal. 2014;11:16.
Okuda T, Ogino Y, Yamashita S, et al. Diagnostic laparoscopy identifies a peritoneal adenomatoid-like mesothelioma masquerading as ovarian cancer: a case report. Eur J Gynaecol Oncol. 2014;35:91-94.
Mori D, Kido S, Hiraki M, et al. Peritoneal adenomatoid (microcystic) mesothelioma. Pathol Int. 2020;70:876-880.
Kawabe K, Sato H, Kitano A, et al. Adenomatoid mesothelioma arising from the diaphragm: a case report and review of the literature. J Med Case Rep. 2022;16:228.
Ordóñez NG. Mesothelioma with signet-ring cell features: report of 23 cases. Mod Pathol. 2013;26:370-384.
Weiss SW, Tavassoli FA. Multicystic mesothelioma, an analysis of pathological findings and biological behavior in 37 cases. Am J Surg Pathol. 1988;12:737-746.
Panagopoulos I, Gorunova L, Davidson B, Heim S. Novel TNS3-MAP3K3 and ZFPM2-ELF5 fusion genes identified by RNA sequencing in multicystic mesothelioma with t(7;17)(p12;q23) and t(8;11)(q23;p13). Cancer Lett. 2015;357:502-509.
Goode B, Joseph NM, Stevers M, et al. Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Mod Pathol. 2018;31:660-673.
Karpathiou G, Hiroshima K, Peoc'h M. Adenomatoid tumor: a review of pathology with focus on unusual presentations and sites, histogenesis, differential diagnosis, and molecular and clinical aspects with a historic overview of its description. Adv Anat Pathol. 2020;27:394-407.
Argani P, Harvey I, Nielsen GP, et al. EWSR1/FUS-CREB fusions define a distinctive malignant epithelioid neoplasm with predilection for mesothelial-lined cavities. Mod Pathol. 2020;33:2233-2243.