Workflow for health-related and brain data lifecycle

. 2022 ; 4 () : 1025086. [epub] 20221130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36532611

Poor lifestyle leads potentially to chronic diseases and low-grade physical and mental fitness. However, ahead of time, we can measure and analyze multiple aspects of physical and mental health, such as body parameters, health risk factors, degrees of motivation, and the overall willingness to change the current lifestyle. In conjunction with data representing human brain activity, we can obtain and identify human health problems resulting from a long-term lifestyle more precisely and, where appropriate, improve the quality and length of human life. Currently, brain and physical health-related data are not commonly collected and evaluated together. However, doing that is supposed to be an interesting and viable concept, especially when followed by a more detailed definition and description of their whole processing lifecycle. Moreover, when best practices are used to store, annotate, analyze, and evaluate such data collections, the necessary infrastructure development and more intense cooperation among scientific teams and laboratories are facilitated. This approach also improves the reproducibility of experimental work. As a result, large collections of physical and brain health-related data could provide a robust basis for better interpretation of a person's overall health. This work aims to overview and reflect some best practices used within global communities to ensure the reproducibility of experiments, collected datasets and related workflows. These best practices concern, e.g., data lifecycle models, FAIR principles, and definitions and implementations of terminologies and ontologies. Then, an example of how an automated workflow system could be created to support the collection, annotation, storage, analysis, and publication of findings is shown. The Body in Numbers pilot system, also utilizing software engineering best practices, was developed to implement the concept of such an automated workflow system. It is unique just due to the combination of the processing and evaluation of physical and brain (electrophysiological) data. Its implementation is explored in greater detail, and opportunities to use the gained findings and results throughout various application domains are discussed.

Zobrazit více v PubMed

Salem R, Elsharkawy B, Kader HA. An ontology-based framework for linking heterogeneous medical data. International Conference on Advanced Intelligent Systems, Informatics. Cham (Switzerland): Springer (2016). p. 836–45.

Mavrogiorgou A, Kiourtis A, Kyriazis D. A plug “n” play approach for dynamic data acquisition from heterogeneous IoT medical devices of unknown nature. Evol Syst. (2020) 11:269–89. 10.1007/s12530-019-09286-5 DOI

Abrams MB, Bjaalie JG, Das S, Egan GF, Ghosh SS, Goscinski WJ, et al. A standards organization for open, fair neuroscience: the international neuroinformatics coordinating facility. Neuroinformatics (2021) 20:1–12. 10.1007/s12021-020-09509-0 PubMed DOI PMC

Adel E, El-Sappagh S, Barakat S, Elmogy M. Ontology-based electronic health record semantic interoperability: a survey. U-healthcare monitoring systems. Amsterdam: Elsevier (2019). p. 315–52.

Ascoli GA, Maraver P, Nanda S, Polavaram S, Armañanzas R. Win–win data sharing in neuroscience. Nat Methods. (2017) 14:112–6. 10.1038/nmeth.4152 PubMed DOI PMC

Meyer MN. Practical tips for ethical data sharing. Adv Meth Pract Psychol Sci. (2018) 1:131–44. 10.1177/2515245917747656 DOI

Pittet P, Cruz C, Nicolle C. Guidelines for a dynamic ontology—integrating tools of evolution, versioning in ontology. Paris: SciTePress; (2011). p. 173–9. 10.5220/0003653201730179 DOI

Eshghishargh A. Ontologies in neuroscience, their application in processing questions [Ph.D. thesis]. Melbourne: The University of Melbourne (2019).

Fudholi DH, Rahayu W, Pardede E, Hendrik. A data-driven approach toward building dynamic ontology. Information, Communication Technology—EurAsia Conference. Berlin, Heidelberg: Springer (2013). p. 223–32.

Bonacin R, Hornung H, Dos Reis JC, Pereira R, Baranauskas MCC. Pragmatic aspects of collaborative problem solving: towards a framework for conceptualizing dynamic knowledge. International Conference on Enterprise Information Systems. Berlin, Heidelberg: Springer (2012). p. 410–26.

Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham W, Fowler M, et al. Manifesto for agile software development (2001). Available at: https://agilemanifesto.org/ (Accessed 2022-06-08).

Dyck A, Penners R, Lichter H. Towards definitions for release engineering and devops. 2015 IEEE/ACM 3rd International Workshop on Release Engineering. Florence: IEEE (2015). p. 3.

Jabbari R, Petersen K, Tanveer B. What is devops? A systematic mapping study on definitions and practices. Proceedings of the Scientific Workshop Proceedings of XP2016. New York, NY, United States: Association for Computing Machinery (2016). p. 1–11.

Erich F, Amrit C, Daneva M. A qualitative study of devops usage in practice. J Softw Evol Process. (2017) 29:e1885. 10.1002/smr.1885 DOI

Liebmann L. Reasons why dataops is essential for big data success. IBM Big Data & Analytics Hub. Retrieved October. (2014) 28:2020.

Palmer A. From devops to dataops. Tamr Inc; (2015).

DataKitchen. Dataops is not just devops for data. Medium; (2018).

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, et al. Hidden technical debt in machine learning systems. Advances in neural information processing systems. Curran Associates, Inc. (2015). p. 2503–11.

Prasad P, Cappelli W, Fletcher C. Market guide for AIOps platforms (2017). Available at: https://www.gartner.com/en/documents/3772124 (Accessed 2022-06-08).

Tom E, Aurum A, Vidgen R. An exploration of technical debt. J Syst Softw. (2013) 86:1498–516. 10.1016/j.jss.2012.12.052 DOI

Guo Y, Seaman C, Gomes R, Cavalcanti A, Tonin G, Da Silva FQ, et al. Tracking technical debt—an exploratory case study. 2011 27th IEEE international conference on software maintenance (ICSM). Williamsburg: IEEE (2011). p. 528–31.

Klinger T, Tarr P, Wagstrom P, Williams C. An enterprise perspective on technical debt. Proceedings of the 2nd Workshop on Managing Technical Debt. New York, NY, United States: Association for Computing Machinery (2011). p. 35–8. (Accessed 2022-05-12).

Seaman C, Guo Y, Zazworka N, Shull F, Izurieta C, Cai Y, et al. Using technical debt data in decision making: potential decision approaches. 2012 Third International Workshop on Managing Technical Debt (MTD). Zurich: IEEE (2012). p. 45–8.

Lim E, Taksande N, Seaman C. A balancing act: what software practitioners have to say about technical debt. IEEE Softw. (2012) 29:22–7. 10.1109/MS.2012.130 DOI

Snipes W, Robinson B, Guo Y, Seaman C. Defining the decision factors for managing defects: a technical debt perspective. 2012 Third International Workshop on Managing Technical Debt (MTD). Zurich: IEEE (2012). p. 54–60.

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The fair guiding principles for scientific data management, stewardship. Sci Data. (2016) 3:1–9. 10.1038/sdata.2016.18 PubMed DOI PMC

Roche C. Ontoterminology: how to unify terminology, ontology into a single paradigm. LREC 2012, Eighth International Conference on Language Resources and Evaluation. European Language Resources Association (2012). p. 2626.

Zemmouchi-Ghomari L, Ghomari AR. Ontology versus terminology, from the perspective of ontologists. Int J Web Sci. (2012) 1:315–31. 10.1504/IJWS.2012.052531 DOI

Gruber TR. A translation approach to portable ontology specifications. Knowl Acquis. (1993) 5:199–220. 10.1006/knac.1993.1008 DOI

Borst WN. Construction of engineering ontologies for knowledge sharing and reuse (1997). University of Twente. Available at: https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and- (Accessed 2022-08-22).

Le Franc Y, Davison AP, Gleeson P, Imam FT, Kriener B, Larson SD, et al. Computational neuroscience ontology: a new tool to provide semantic meaning to your models. BMC Neurosci. (2012) 13:1–2. 10.1186/1471-2202-13-S1-P149 PubMed DOI

Avery J, Yearwood J. DOWL: a dynamic ontology language. ICWI. (2003) 2003:985–8. Available at: https://www.researchgate.net/publication/220970000DOWL_A_Dynamic_Ontology_Language

Kumar A, Smith B. Oncology ontology in the NCI thesaurus. Conference on Artificial Intelligence in Medicine in Europe. Berlin, Heidelberg: Springer (2005). p. 213–20.

Frishkoff G, LePendu P, Frank R, Liu H, Dou D. Development of neural electromagnetic ontologies (NEMO): ontology-based tools for representation and integration of event-related brain potentials. Nat Preced. (2009) 1. 10.1038/npre.2009.3458.1 DOI

Frishkoff G, Sydes J, Mueller K, Frank R, Curran T, Connolly J, et al. Minimal information for neural electromagnetic ontologies (MINEMO): a standards-compliant method for analysis and integration of event-related potentials (ERP) data. Stand Genomic Sci. (2011) 5:211–23. 10.4056/sigs.2025347 PubMed DOI PMC

Courtot M, Gibson F, Lister AL, Malone J, Schober D, Brinkman RR, et al. Mireot: The minimum information to reference an external ontology term. Appl Ontol. (2011) 6:23–33. 10.3233/AO-2011-0087 DOI

Stead M, Halford JJ. A proposal for a standard format for neurophysiology data recording and exchange. J Clin Neurophysiol. (2016) 33:403. 10.1097/WNP.0000000000000257 PubMed DOI PMC

Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, et al. Neurodata without borders: creating a common data format for neurophysiology. Neuron. (2015) 88:629–34. 10.1016/j.neuron.2015.10.025 PubMed DOI

INCF. Standards and best practices portfolio (2022). Available at: https://www.incf.org/resources/sbps (Accessed 2022-09-05).

Martone M, Gerkin R, Moucek R, Das S, Goscinski W, Hellgren-Kotaleski J, et al. Nix-neuroscience information exchange format. F1000Research (2020) 9:1–8. 10.7490/f1000research.1117858.1 DOI

Folk M, Heber G, Koziol Q, Pourmal E, Robinson D. An overview of the HDF5 technology suite, its applications. Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases (2011). p. 36–47.

Stoewer A, Kellner CJ, Benda J, Wachtler T, Grewe J. File format, library for neuroscience data and metadata. Front Neuroinform. (2014) 8:10–3389. 10.3389/conf.fninf.2014.18.00027 PubMed DOI

Sprenger J, Zehl L, Pick J, Sonntag M, Grewe J, Wachtler T, et al. odMLtables: a user-friendly approach for managing metadata of neurophysiological experiments. Front Neuroinform. (2019) 13:62. 10.3389/fninf.2019.00062 PubMed DOI PMC

Grewe J, Wachtler T, Benda J. A bottom-up approach to data annotation in neurophysiology. Front Neuroinform. (2011) 5:16. 10.3389/fninf.2011.00016 PubMed DOI PMC

Sporny M, Longley D, Kellogg G, Lanthaler M, Champin P-A, Lindström N. JSON-LD 1.1—a JSON-based serialization for linked data [Ph.D. thesis]. W3C (2019).

Pernet CR, Appelhoff S, Gorgolewski KJ, Flandin G, Phillips C, Delorme A, et al. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci Data. (2019) 6:1–5. 10.1038/s41597-019-0104-8 PubMed DOI PMC

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. (2016) 3:1–9. 10.1038/sdata.2016.44 PubMed DOI PMC

Ruebel O, Tritt A, Dichter B, Braun T, Cain N, Clack N, et al. NWB:N 2.0: an accessible data standard for neurophysiology. ResearchGate (2019). 10.1101/523035 DOI

Horrocks I. What are ontologies good for? Evolution of semantic systems. Springer (2013). p. 175–188.

Johnstone SJ, Barry RJ, Clarke AR. Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clin Neurophysiol. (2013) 124:644–57. 10.1016/j.clinph.2012.09.006 PubMed DOI

Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-neurofeedback as a tool to modulate cognition, behavior: a review tutorial. Front Hum Neurosci. (2017) 11:51. 10.3389/fnhum.2017.00051 PubMed DOI PMC

Tian Y, Xu W, Zhang H, Tam KY, Zhang H, Yang L, et al. The scalp time-varying networks of N170: reference, latency, information flow. Front Neurosci. (2018) 12:250. 10.3389/fnins.2018.00250 PubMed DOI PMC

Qin Y, Jiang S, Zhang Q, Dong L, Jia X, He H, et al. BOLD-fMRI activity informed by network variation of scalp EEG in juvenile myoclonic epilepsy. NeuroImage: Clin. (2019) 22:101759. 10.1016/j.nicl.2019.101759 PubMed DOI PMC

Taylor JR, Williams N, Cusack R, Auer T, Shafto MA, Dixon M, et al. The Cambridge centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage. (2017) 144:262–9. 10.1016/j.neuroimage.2015.09.018 PubMed DOI PMC

Zuo X-N, Xing X-X. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev. (2014) 45:100–18. 10.1016/j.neubiorev.2014.05.009 PubMed DOI

Gongora M, Nicoliche E, Magalhães J, Vicente R, Teixeira S, Bastos VH, et al. Event-related potential (p300): the effects of levetiracetam in cognitive performance. Neurol Sci (2020) 42:1–8. 10.1007/s10072-020-04786-8 PubMed DOI

DiStefano C, Dickinson A, Baker E, Jeste SS. EEG data collection in children with ASD: the role of state in data quality and spectral power. Res Autism Spectr Disord. (2019) 57:132–44. 10.1016/j.rasd.2018.10.001 PubMed DOI PMC

Fisher RA. et al The design of experiments. London and Edinburgh: Oliver and Boyd (1960).

Ioannidis JP. Why most published research findings are false. PLoS Med. (2005) 2:e124. 10.1371/journal.pmed.0020124 PubMed DOI PMC

Trochim WM. Theory of reliability. Web Center for Social Research Methods. Research Methods of Knowledge (2006).

Trochim W. Types of reliability. Research methods knowledge base. Web Center for Social Research Methods (2006). Available at: http://www.socialresearchmethods.net/kb/reltypes.php (Accessed 2022-06-08).

Barba LA. Terminologies for reproducible research [Preprint] arXiv. 2018). Available at: http://arxiv.org/1802.03311 (Accessed 2022-06-08).

Liberman M. Replicability vs. reproducibility—or is it the other way around. The Language Log. Language Log (2015).

Brůha P, Mouček R, Vacek V, Šnejdar P, Černá K, Řehoř P. Collection of human reaction times and supporting health related data for analysis of cognitive and physical performance. Data Br. (2018) 17:469–511. 10.1016/j.dib.2018.01.025 PubMed DOI PMC

Bruha P, Moucek R, Snejdar P, Bohmann D, Kraft V, Rehor P. Exercise and wellness health strategy framework - software prototype for rapid collection and storage of heterogeneous health related data. HEALTHINF. Setúbal: SciTePress (2017). p. 477–83.

Cho H, Ahn M, Ahn S, Kwon M, Jun SC. EEG datasets for motor imagery brain–computer interface. GigaScience. (2017) 6:gix034. 10.1093/gigascience/gix034 PubMed DOI PMC

Picton T, Bentin S, Berg P, Donchin E, Hillyard S, Johnson R. Jr., et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology. (2000) 37:127–52. 10.1111/1469-8986.3720127 PubMed DOI

Brůha P, Mouček R, Volf P, Šimečkové L, Št’áva O. On architecture of bodyinnumbers exercise and wellness health strategy framework. Proceedings of the 4th International Conference on Medical and Health Informatics (ICMHI 2020). New York, NY: Association for Computing Machinery (2020). p. 145–49. Available at: 10.1145/3418094.3418102 DOI

LeBlanc M, Beaulieu-Bonneau S, Mérette C, Savard J, Ivers H, Morin CM. Psychological and health-related quality of life factors associated with insomnia in a population-based sample. J Psychosom Res. (2007) 63:157–66. 10.1016/j.jpsychores.2007.03.004 PubMed DOI

Shepherd D, Welch D, Dirks KN, Mathews R. Exploring the relationship between noise sensitivity, annoyance and health-related quality of life in a sample of adults exposed to environmental noise. Int J Environ Res Public Health. (2010) 7:3579–94. 10.3390/ijerph7103580 PubMed DOI PMC

Sampasa-Kanyinga H, Standage M, Tremblay MS, Katzmarzyk P, Hu G, Kuriyan R, et al. Associations between meeting combinations of 24-h movement guidelines and health-related quality of life in children from 12 countries. Public Health. (2017) 153:16–24. 10.1016/j.puhe.2017.07.010 PubMed DOI

Bruha P, Moucek R, Vacek V, Snejdar P, Vareka L, Kraft V, et al. Advances in building bodyinnumbers exercise and wellness health strategy framework. HEALTHINF. Setúbal: SciTePress (2018). p. 548–54.

Graf B, Krüger M, Müller F, Ruhland A, Zech A. Nombot: simplify food tracking. Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia. New York, NY, United States: Association for Computing Machinery (2015). p. 360–3.

Fitzpatrick KK, Darcy A, Vierhile M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (WOEBOT): a randomized controlled trial. JMIR Ment Health. (2017) 4:e19. 10.2196/mental.7785 PubMed DOI PMC

Inkster B, Sarda S, Subramanian V, Inkster B, Sarda S, Subramanian V, et al. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIR Mhealth Uhealth. (2018) 6:e12106. 10.2196/12106 PubMed DOI PMC

Mehta A, Niles AN, Vargas JH, Marafon T, Couto DD, Gross JJ, et al. Acceptability and effectiveness of artificial intelligence therapy for anxiety and depression (youper): Longitudinal observational study. J Med Internet Res. (2021) 23:e26771. 10.2196/26771 PubMed DOI PMC

Stein N, Brooks K. A fully automated conversational artificial intelligence for weight loss: longitudinal observational study among overweight and obese adults. JMIR diabetes. (2017) 2:e8590. 10.2196/diabetes.8590 PubMed DOI PMC

Beck AT. Cognitive therapy and the emotional disorders. City of Westminster, London: Penguin; (1979).

Salamon J. Influencing an artificial conversational entity by information fusion (2020). Available at: http://www.kiv.zcu.cz/site/documents/verejne/vyzkum/publikace/technicke-zpravy/2020/Rigo˙Salamon˙2020˙04.pdf (Accessed 2022-06-08).

Vareka L. Methods for signal classification and their application to the design of brain-computer interfaces [Ph.D. thesis]. Pilsen: Faculty of Applied Sciences, University of West Bohemia (2018).

Vařeka L, Ladouce S. Prediction of navigational decisions in the real-world: a visual p300 event-related potentials brain-computer interface. Int J Hum Comput Interact. (2021) 37:1375–89. 10.1080/10447318.2021.1888510 DOI

Nature Portfolio. Protocol exchange (2022). Available at: https://protocolexchange.researchsquare.com (Accessed 2022-06-08).

Harvard College. Harvard dataverse (2022). Available at: https://dataverse.harvard.edu (Accessed 2022-06-08).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...