Dysregulation of Amino Acid, Lipid, and Acylpyruvate Metabolism in Idiopathic Intracranial Hypertension: A Non-targeted Case Control and Longitudinal Metabolomic Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/K015184/1
Medical Research Council - United Kingdom
MR/M009157/1
Medical Research Council - United Kingdom
PubMed
36534069
PubMed Central
PMC10088035
DOI
10.1021/acs.jproteome.2c00449
Knihovny.cz E-zdroje
- Klíčová slova
- arginine metabolism, idiopathic intracranial hypertension, intracranial pressure, lipid metabolism, metabolomics,
- MeSH
- aminokyseliny MeSH
- hmotnostní úbytek MeSH
- lidé MeSH
- lipidy MeSH
- pseudotumor cerebri * mozkomíšní mok komplikace MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- lipidy MeSH
Background: Idiopathic intracranial hypertension (IIH) is characterized by increased intracranial pressure occurring predominantly in women with obesity. The pathogenesis is not understood. We have applied untargeted metabolomic analysis using ultrahigh-performance liquid chromatography-mass spectrometry to characterize the cerebrospinal fluid (CSF) and serum in IIH compared to control subjects. Methods and findings: Samples were collected from IIH patients (n = 66) with active disease at baseline and again at 12 months following therapeutic weight loss. Control samples were collected from gender- and weight-matched healthy controls (n = 20). We identified annotated metabolites in CSF, formylpyruvate and maleylpyruvate/fumarylpyruvate, which were present at lower concentrations in IIH compared to control subjects and returned to values observed in controls following weight loss. These metabolites showed the opposite trend in serum at baseline. Multiple amino acid metabolic pathways and lipid classes were perturbed in serum and CSF in IIH alone. Serum lipid metabolite pathways were significantly increased in IIH. Conclusions: We observed a number of differential metabolic pathways related to amino acid, lipid, and acylpyruvate metabolism, in IIH compared to controls. These pathways were associated with clinical measures and normalized with disease remission. Perturbation of these metabolic pathways provides initial understanding of disease dysregulation in IIH.
Centre for Endocrinology Diabetes and Metabolism Birmingham Health Partners Birmingham B15 2TT U K
Phenome Centre Birmingham University of Birmingham Birmingham B15 2TT U K
School of Biosciences University of Birmingham Birmingham B15 2TT U K
Zobrazit více v PubMed
Virdee J.; Larcombe S.; Vijay V.; Sinclair A. J.; Dayan M.; Mollan S. P. Reviewing the Recent Developments in Idiopathic Intracranial Hypertension. Ophthalmol. Ther. 2020, 9, 767–781. 10.1007/s40123-020-00296-0. PubMed DOI PMC
Mollan S. P.; Tahrani A. A.; Sinclair A. J. The Potentially Modifiable Risk Factor in Idiopathic Intracranial Hypertension: Body Weight. Neurol. Clin. Pract. 2021, 11, e504–e507. 10.1212/cpj.0000000000001063. PubMed DOI PMC
Adderley N. J.; Subramanian A.; Nirantharakumar K.; Yiangou A.; Gokhale K. M.; Mollan S. P.; Sinclair A. J. Association Between Idiopathic Intracranial Hypertension and Risk of Cardiovascular Diseases in Women in the United Kingdom. JAMA Neurol. 2019, 76, 1088–1098. 10.1001/jamaneurol.2019.1812. PubMed DOI PMC
Mollan S. P.; Aguiar M.; Evison F.; Frew E.; Sinclair A. J. The expanding burden of idiopathic intracranial hypertension. Eye 2018, 33, 478–485. 10.1038/s41433-018-0238-5. PubMed DOI PMC
Mollan S. P.; Davies B.; Silver N. C.; Shaw S.; Mallucci C. L.; Wakerley B. R.; Krishnan A.; Chavda S. V.; Ramalingam S.; Edwards J.; Hemmings K.; Williamson M.; Burdon M. A.; Hassan-Smith G.; Digre K.; Liu G. T.; Jensen R. H.; Sinclair A. J. Idiopathic intracranial hypertension: consensus guidelines on management. J. Neurol., Neurosurg. Psychiatry 2018, 89, 1088–1100. 10.1136/jnnp-2017-317440. PubMed DOI PMC
Sinclair A. J.; Burdon M. A.; Nightingale P. G.; Ball A. K.; Good P.; Matthews T. D.; Jacks A.; Lawden M.; Clarke C. E.; Stewart P. M.; Walker E. A.; Tomlinson J. W.; Rauz S. Low energy diet and intracranial pressure in women with idiopathic intracranial hypertension: prospective cohort study. BMJ 2010, 341, c2701.10.1136/bmj.c2701. PubMed DOI PMC
Mollan S. P.; Mitchell J. L.; Ottridge R. S.; Aguiar M.; Yiangou A.; Alimajstorovic Z.; Cartwright D. M.; Grech O.; Lavery G. G.; Westgate C. S. J.; Vijay V.; Scotton W.; Wakerley B. R.; Matthews T. D.; Ansons A.; Hickman S. J.; Benzimra J.; Rick C.; Singhal R.; Tahrani A. A.; Brock K.; Frew E.; Sinclair A. J. Effectiveness of Bariatric Surgery vs Community Weight Management Intervention for the Treatment of Idiopathic Intracranial Hypertension: A Randomized Clinical Trial. JAMA Neurol. 2021, 78, 678–686. 10.1001/jamaneurol.2021.0659. PubMed DOI PMC
Mollan S. P.; Grech O.; Sinclair A. J. Headache attributed to idiopathic intracranial hypertension and persistent post-idiopathic intracranial hypertension headache: A narrative review. Headache 2021, 61, 808–816. 10.1111/head.14125. PubMed DOI
Mollan S. P.; Wakerley B. R.; Alimajstorovic Z.; Mitchell J.; Ottridge R.; Yiangou A.; Thaller M.; Gupta A.; Grech O.; Lavery G.; Brock K.; Sinclair A. J. Intracranial pressure directly predicts headache morbidity in idiopathic intracranial hypertension. J. Headache Pain 2021, 22, 118.10.1186/s10194-021-01321-8. PubMed DOI PMC
Hornby C.; Mollan S. P.; Botfield H.; O’Reilly M. W.; Sinclair A. J. Metabolic Concepts in Idiopathic Intracranial Hypertension and Their Potential for Therapeutic Intervention. J. Neuro-Ophthalmol. 2018, 38, 522–530. 10.1097/wno.0000000000000684. PubMed DOI PMC
Westgate C. S.; Botfield H. F.; Alimajstorovic Z.; Yiangou A.; Walsh M.; Smith G.; Singhal R.; Mitchell J. L.; Grech O.; Markey K. A.; Hebenstreit D.; Tennant D. A.; Tomlinson J. W.; Mollan S. P.; Ludwig C.; Akerman I.; Lavery G. G.; Sinclair A. J. Systemic and adipocyte transcriptional and metabolic dysregulation in idiopathic intracranial hypertension. JCI Insight 2021, 6, e14534610.1172/jci.insight.145346. PubMed DOI PMC
O’Reilly M. W.; Westgate C. S.; Hornby C.; Botfield H.; Taylor A. E.; Markey K.; Mitchell J. L.; Scotton W. J.; Mollan S. P.; Yiangou A.; Jenkinson C.; Gilligan L. C.; Sherlock M.; Gibney J.; Tomlinson J. W.; Lavery G. G.; Hodson D. J.; Arlt W.; Sinclair A. J. A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics. JCI Insight 2019, 4, e12534810.1172/jci.insight.125348. PubMed DOI PMC
Hornby C.; Botfield H.; O’Reilly M. W.; Westgate C.; Mitchell J.; Mollan S. P.; Manolopoulos K.; Tomlinson J.; Sinclair A. Evaluating the Fat Distribution in Idiopathic Intracranial Hypertension Using Dual-Energy X-ray Absorptiometry Scanning. Neuroophthalmology 2018, 42, 99–104. 10.1080/01658107.2017.1334218. PubMed DOI PMC
Hardy R. S.; Botfield H.; Markey K.; Mitchell J. L.; Alimajstorovic Z.; Westgate C. S. J.; Sagmeister M.; Fairclough R. J.; Ottridge R. S.; Yiangou A.; Storbeck K. H.; Taylor A. E.; Gilligan L. C.; Arlt W.; Stewart P. M.; Tomlinson J. W.; Mollan S. P.; Lavery G. G.; Sinclair A. J. 11βHSD1 Inhibition with AZD4017 Improves Lipid Profiles and Lean Muscle Mass in Idiopathic Intracranial Hypertension. J. Clin. Endocrinol. Metab. 2021, 106, 174–187. 10.1210/clinem/dgaa766. PubMed DOI PMC
Mollan S.; Hemmings K.; Herd C. P.; Denton A.; Williamson S.; Sinclair A. J. What are the research priorities for idiopathic intracranial hypertension? A priority setting partnership between patients and healthcare professionals. BMJ Open 2019, 9, e02657310.1136/bmjopen-2018-026573. PubMed DOI PMC
Villoslada P.; Alonso C.; Agirrezabal I.; Kotelnikova E.; Zubizarreta I.; Pulido-Valdeolivas I.; Saiz A.; Comabella M.; Montalban X.; Villar L.; Alvarez-Cermeño J. C.; Fernández O.; Alvarez-Lafuente R.; Arroyo R.; Castro A. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e32110.1212/nxi.0000000000000321. PubMed DOI PMC
Teruya T.; Chen Y. J.; Kondoh H.; Fukuji Y.; Yanagida M. Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e202285711810.1073/pnas.2022857118. PubMed DOI PMC
Paglia G.; Stocchero M.; Cacciatore S.; Lai S.; Angel P.; Alam M. T.; Keller M.; Ralser M.; Astarita G. Unbiased Metabolomic Investigation of Alzheimer’s Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism. J. Proteome Res. 2016, 15, 608–618. 10.1021/acs.jproteome.5b01020. PubMed DOI PMC
Sinclair E.; Trivedi D. K.; Sarkar D.; Walton-Doyle C.; Milne J.; Kunath T.; Rijs A. M.; de Bie R. M. A.; Goodacre R.; Silverdale M.; Barran P. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 2021, 12, 1592.10.1038/s41467-021-21669-4. PubMed DOI PMC
Sinclair A. J.; Viant M. R.; Ball A. K.; Burdon M. A.; Walker E. A.; Stewart P. M.; Rauz S.; Young S. P. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases--a diagnostic tool?. NMR Biomed. 2010, 23, 123–132. 10.1002/nbm.1428. PubMed DOI
Ottridge R.; Mollan S. P.; Botfield H.; Frew E.; Ives N. J.; Matthews T.; Mitchell J.; Rick C.; Singhal R.; Woolley R.; Sinclair A. J. Randomised controlled trial of bariatric surgery versus a community weight loss programme for the sustained treatment of idiopathic intracranial hypertension: the Idiopathic Intracranial Hypertension Weight Trial (IIH:WT) protocol. BMJ Open 2017, 7, e01742610.1136/bmjopen-2017-017426. PubMed DOI PMC
Elliot L.; Frew E.; Mollan S. P.; Mitchell J. L.; Yiangou A.; Alimajstorovic Z.; Ottridge R. S.; Wakerley B. R.; Thaller M.; Grech O.; Singhal R.; Tahrani A. A.; Harrison M.; Sinclair A. J.; Aguiar M. Cost-effectiveness of bariatric surgery versus community weight management to treat obesity-related idiopathic intracranial hypertension: evidence from a single-payer healthcare system. Surg. Obes. Relat. Dis. 2021, 17, 1310–1316. 10.1016/j.soard.2021.03.020. PubMed DOI PMC
Smith C. A.; Want E. J.; O’Maille G.; Abagyan R.; Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. 10.1021/ac051437y. PubMed DOI
Pang Z.; Chong J.; Zhou G.; de Lima Morais D. A.; Chang L.; Barrette M.; Gauthier C.; Jacques P.; Li S.; Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. 10.1093/nar/gkab382. PubMed DOI PMC
Benjamini Y.; Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc., B: Stat. Methodol. 1995, 57, 289–300. 10.1111/j.2517-6161.1995.tb02031.x. DOI
Leibig M.; Liebeke M.; Mader D.; Lalk M.; Peschel A.; Götz F. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. J. Bacteriol. 2011, 193, 952–962. 10.1128/jb.01161-10. PubMed DOI PMC
Sawers R. G.; Clark D. P.. Fermentative pyruvate and acetyl-coenzyme A metabolism. EcoSal Plus 2004, 1, 10.1128/ecosalplus.3.5.3. PubMed DOI
Sugiyama S.-i.; Yano K.; Komagata K.; Arima K.; Tanaka H. Metabolism of Aromatic Compounds by Microbes: Part VII. Gentisic Acid Oxidase Part VIII. Further Studies of Centisic Acid Oxidase Part IX. The Enzymatic Conversion of Gentisic Acid to Fumarylpyruvic Acid. J. Agric. Chem. Soc. Jpn. 1960, 24, 243–261. 10.1080/03758397.1960.10857665. DOI
Pircher H.; Straganz G. D.; Ehehalt D.; Morrow G.; Tanguay R. M.; Jansen-Dürr P. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase. J. Biol. Chem. 2011, 286, 36500–36508. 10.1074/jbc.m111.264770. PubMed DOI PMC
Berkowitz E.; Kopelman Y.; Kadosh D.; Carasso S.; Tiosano B.; Kesler A.; Geva-Zatorsky N. “More Guts Than Brains?”-The Role of Gut Microbiota in Idiopathic Intracranial Hypertension. J. Neuro-Ophthalmol. 2021, 42, e70–e77. 10.1097/wno.0000000000001330. PubMed DOI
Ghonimy A.; Zhang D. M.; Farouk M. H.; Wang Q. The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics. Int. J. Mol. Sci. 2018, 19, 1008.10.3390/ijms19041008. PubMed DOI PMC
Lamichhane S.; Sen P.; Alves M. A.; Ribeiro H. C.; Raunioniemi P.; Hyötyläinen T.; Orešič M. Linking Gut Microbiome and Lipid Metabolism: Moving beyond Associations. Metabolites 2021, 11, 55.10.3390/metabo11010055. PubMed DOI PMC
Tran T. T.; Postal B. G.; Demignot S.; Ribeiro A.; Osinski C.; Pais de Barros J. P.; Blachnio-Zabielska A.; Leturque A.; Rousset M.; Ferré P.; Hajduch E.; Carrière V. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production. J. Biol. Chem. 2016, 291, 16328–16338. 10.1074/jbc.m115.709626. PubMed DOI PMC
Iqbal J.; Hussain M. M. Intestinal lipid absorption. Am. J. Physiol.: Endocrinol. Metab. 2009, 296, E1183–E1194. 10.1152/ajpendo.90899.2008. PubMed DOI PMC
Kang M.; Yoo H. J.; Kim M.; Kim M.; Lee J. H. Metabolomics identifies increases in the acylcarnitine profiles in the plasma of overweight subjects in response to mild weight loss: a randomized, controlled design study. Lipids Health Dis. 2018, 17, 237.10.1186/s12944-018-0887-1. PubMed DOI PMC
Perng W.; Rifas-Shiman S. L.; Sordillo J.; Hivert M. F.; Oken E. Metabolomic Profiles of Overweight/Obesity Phenotypes During Adolescence: A Cross-Sectional Study in Project Viva. Obesity 2020, 28, 379–387. 10.1002/oby.22694. PubMed DOI PMC
Monnerie S.; Comte B.; Ziegler D.; Morais J. A.; Pujos-Guillot E.; Gaudreau P. Metabolomic and Lipidomic Signatures of Metabolic Syndrome and its Physiological Components in Adults: A Systematic Review. Sci. Rep. 2020, 10, 669.10.1038/s41598-019-56909-7. PubMed DOI PMC
Yin X.; Willinger C. M.; Keefe J.; Liu J.; Fernández-Ortiz A.; Ibáñez B.; Peñalvo J.; Adourian A.; Chen G.; Corella D.; Pamplona R.; Portero-Otin M.; Jove M.; Courchesne P.; van Duijn C. M.; Fuster V.; Ordovás J. M.; Demirkan A.; Larson M. G.; Levy D. Lipidomic profiling identifies signatures of metabolic risk. EBioMedicine 2020, 51, 102520.10.1016/j.ebiom.2019.10.046. PubMed DOI PMC
Gandam Venkata S. K.; Guillotte K.; Murphy B.; Bhuram S. S.; Bhuram S. C. Rapid Rescue From Hyperammonemic Coma After Valproic Acid Poisoning: Dual Therapy With Continuous Renal Replacement Therapy and L-Carnitine Supplementation. Cureus 2021, 13, e1596810.7759/cureus.15968. PubMed DOI PMC
Charleston L.; Khalil S.; Young W. B. Carnitine Responsive Migraine Headache Syndrome: Case Report and Review of the Literature. Curr. Pain Headache Rep. 2021, 25, 26.10.1007/s11916-021-00936-5. PubMed DOI
Nattagh-Eshtivani E.; Sani M. A.; DahriSani M.; Ghalichi F.; Ghavami A.; Arjang P.; Tarighat-Esfanjani A. The role of nutrients in the pathogenesis and treatment of migraine headaches. Biomed. Pharmacother. 2018, 102, 317–325. 10.1016/j.biopha.2018.03.059. PubMed DOI
Kabbouche M. A.; Powers S. W.; Vockell A. L. B.; LeCates S. L.; Cfnp A. D.; Hershey A. D. Carnitine palmityltransferase II (CPT2) deficiency and migraine headache: two case reports. Headache 2003, 43, 490–495. 10.1046/j.1526-4610.2003.03095.x. PubMed DOI
Ooi L.-Y.; Walker B.; Bodkin P.; Whittle I. Idiopathic intracranial hypertension: can studies of obesity provide the key to understanding pathogenesis?. Br. J. Neurosurg. 2008, 22, 187–194. 10.1080/02688690701827340. PubMed DOI
Tanha H. M.; Sathyanarayanan A.; Nyholt D. R. Genetic overlap and causality between blood metabolites and migraine. Am. J. Hum. Genet. 2021, 108, 2086–2098. 10.1016/j.ajhg.2021.09.011. PubMed DOI PMC
Castor K.; Dawlaty J.; Arakaki X.; Gross N.; Woldeamanuel M.; Yohannes W.; Harrington M. G.; Cowan R. P.; Fonteh A. N. Plasma lipolysis and changes in plasma and cerebrospinal fluid signaling lipids reveal abnormal lipid metabolism in chronic migraine. Front. Mol. Neurosci. 2021, 14, 691733.10.3389/fnmol.2021.691733. PubMed DOI PMC
Slomski A. Diets High in Omega-3 Fatty Acids Might Ease Migraines. JAMA, J. Am. Med. Assoc. 2021, 326, 691.10.1001/jama.2021.12645. PubMed DOI
Kogelman L. J.; Falkenberg K.; Buil A.; Erola P.; Courraud J.; Laursen S. S.; Michoel T.; Olesen J.; Hansen T. F. Changes in the gene expression profile during spontaneous migraine attacks. Sci. Rep. 2021, 11, 8294.10.1038/s41598-021-87503-5. PubMed DOI PMC
Rist P. M.; Buring J. E.; Cook N. R.; Manson J. E.; Kurth T. Effect of Vitamin D and/or Marine n-3 Fatty Acid Supplementation on Changes in Migraine Frequency and Severity. Am. J. Med. 2021, 134, 756–762.e5. 10.1016/j.amjmed.2020.11.023. PubMed DOI PMC
Al-Enezi M.; Al-Saleh H.; Nasser M. Mitochondrial disorders with significant ophthalmic manifestations. Middle East Afr. J. Ophthalmol. 2008, 15, 81–86. 10.4103/0974-9233.51998. PubMed DOI PMC
Eide P. K.; Hasan-Olive M. M.; Hansson H. A.; Enger R. Increased occurrence of pathological mitochondria in astrocytic perivascular endfoot processes and neurons of idiopathic intracranial hypertension. J. Neurosci. Res. 2021, 99, 467–480. 10.1002/jnr.24743. PubMed DOI PMC
Fila M.; Pawłowska E.; Blasiak J. Mitochondria in migraine pathophysiology—does epigenetics play a role?. Arch. Med. Sci. 2019, 15, 944–956. 10.5114/aoms.2019.86061. PubMed DOI PMC
Burow P.; Meyer A.; Naegel S.; Watzke S.; Zierz S.; Kraya T. Headache and migraine in mitochondrial disease and its impact on life—results from a cross-sectional, questionnaire-based study. Acta Neurol. Belg. 2021, 121, 1151–1156. 10.1007/s13760-021-01630-4. PubMed DOI PMC
Kraya T.; Deschauer M.; Joshi P. R.; Zierz S.; Gaul C. Prevalence of Headache in Patients With Mitochondrial Disease: A Cross-Sectional Study. Headache 2018, 58, 45–52. 10.1111/head.13219. PubMed DOI
Domitrz I.; Koter M.; Cholojczyk M.; Domitrz W.; Baranczyk-Kuzma A.; Kaminska A. Changes in serum amino acids in migraine patients without and with aura and their possible usefulness in the study of migraine pathogenesis. CNS Neurol. Disord.: Drug Targets 2015, 14, 345–349. 10.2174/1871527314666150225144300. PubMed DOI
Castillo J.; Martínez F.; Corredera E.; Lema M.; Noya M. Migraine and histamine: determining histidine in plasma and cerebrospinal fluid during migraine attacks. Rev. Neurol. 1995, 23, 749–751. PubMed
Sjaastad O.; Sjaastad Ø. Urinary histamine excretion in migraine and cluster headache. J. Neurol. 1977, 216, 91–104. 10.1007/bf00312943. PubMed DOI
Romero S. A.; McCord J. L.; Ely M. R.; Sieck D. C.; Buck T. M.; Luttrell M. J.; MacLean D. A.; Halliwill J. R. Mast cell degranulation and de novo histamine formation contribute to sustained postexercise vasodilation in humans. J. Appl. Physiol. 2017, 122, 603–610. 10.1152/japplphysiol.00633.2016. PubMed DOI PMC
Jin H.; Koyama T.; Hatanaka Y.; Akiyama S.; Takayama F.; Kawasaki H. Histamine-induced vasodilation and vasoconstriction in the mesenteric resistance artery of the rat. Eur. J. Pharmacol. 2006, 529, 136–144. 10.1016/j.ejphar.2005.10.060. PubMed DOI
Niu Y.-C.; Feng R.-N.; Hou Y.; Li K.; Kang Z.; Wang J.; Sun C.-H.; Li Y. Histidine and arginine are associated with inflammation and oxidative stress in obese women. Br. J. Nutr. 2012, 108, 57–61. 10.1017/s0007114511005289. PubMed DOI
Ren C.; Liu J.; Zhou J.; Liang H.; Wang Y.; Sun Y.; Ma B.; Yin Y. Low levels of serum serotonin and amino acids identified in migraine patients. Biochem. Biophys. Res. Commun. 2018, 496, 267–273. 10.1016/j.bbrc.2017.11.203. PubMed DOI
Chaliha D.; Vaccarezza M.; Lam V.; Takechi R.; Mamo J. C. Attenuation of chronic tension headache frequency and severity with daily L-arginine and aged garlic extract dietary supplementation. Eur. J. Clin. Nutr. 2022, 76, 317–319. 10.1038/s41430-021-00962-x. PubMed DOI
Taheri P.; Mohammadi F.; Nazeri M.; Zarei M. R.; Chamani G.; Esfahlani M. A.; Taheri F.; Shabani M. Nitric oxide role in anxiety-like behavior, memory and cognitive impairments in animal model of chronic migraine. Heliyon 2020, 6, e0565410.1016/j.heliyon.2020.e05654. PubMed DOI PMC
Chaliha D. R.; Vaccarezza M.; Takechi R.; Lam V.; Visser E.; Drummond P.; Mamo J. C. L. A paradoxical vasodilatory nutraceutical intervention for prevention and attenuation of migraine—A hypothetical review. Nutrients 2020, 12, 2487.10.3390/nu12082487. PubMed DOI PMC
Wen Z.; He M.; Peng C.; Rao Y.; Li J.; Li Z.; Du L.; Li Y.; Zhou M.; Hui O. Metabolomics and 16S rRNA Gene sequencing analyses of changes in the intestinal flora and biomarkers induced by gastrodia-uncaria treatment in a rat model of chronic migraine. Front. Pharmacol. 2019, 10, 1425.10.3389/fphar.2019.01425. PubMed DOI PMC
D’Andrea G.; Gucciardi A.; Perini F.; Leon A. Pathogenesis of cluster headache: from episodic to chronic form, the role of neurotransmitters and neuromodulators. Headache 2019, 59, 1665–1670. 10.1111/head.13673. PubMed DOI
Reyhani A.; Celik Y.; Karadag H.; Gunduz O.; Asil T.; Sut N. High asymmetric dimethylarginine, symmetric dimethylarginine and L-arginine levels in migraine patients. Neurol. Sci. 2017, 38, 1287–1291. 10.1007/s10072-017-2970-1. PubMed DOI
Erdélyi-Bótor S.; Komáromy H.; Kamson D. O.; Kovács N.; Perlaki G.; Orsi G.; Molnár T.; Illes Z.; Nagy L.; Kéki S. Serum L-arginine and dimethylarginine levels in migraine patients with brain white matter lesions. Cephalalgia 2017, 37, 571–580. 10.1177/0333102416651454. PubMed DOI
Barbanti P.; Egeo G.; Aurilia C.; Fofi L.; Della-Morte D. Drugs targeting nitric oxide synthase for migraine treatment. Expert Opin. Invest. Drugs 2014, 23, 1141–1148. 10.1517/13543784.2014.918953. PubMed DOI
Uzar E.; Evliyaoglu O.; Toprak G.; Acar A.; Yucel Y.; Calisir T.; Cevik M. U.; Tasdemir N. Increased asymmetric dimethylarginine and nitric oxide levels in patients with migraine. J. Headache Pain 2011, 12, 239–243. 10.1007/s10194-011-0323-7. PubMed DOI PMC
Perko D.; Pretnar-Oblak J.; Šabovič M.; Žvan B.; Zaletel M. Cerebrovascular reactivity to l-arginine in the anterior and posterior cerebral circulation in migraine patients. Acta Neurol. Scand. 2011, 124, 269–274. 10.1111/j.1600-0404.2010.01468.x. PubMed DOI
Dashtabi A.; Mazloom Z.; Fararouei M.; Hejazi N. Oral L-Arginine Administration Improves Anthropometric and Biochemical Indices Associated With Cardiovascular Diseases in Obese Patients: A Randomized, Single Blind Placebo Controlled Clinical Trial. Res. Cardiovasc. Med. 2016, 5, e2941910.5812/cardiovascmed.29419. PubMed DOI PMC
Mohan S.; Patel H.; Bolinaga J.; Soekamto N. AMP-activated protein kinase regulates L-arginine mediated cellular responses. Nutr. Metab. 2013, 10, 40.10.1186/1743-7075-10-40. PubMed DOI PMC
Mulla Y.; Markey K. A.; Woolley R. L.; Patel S.; Mollan S. P.; Sinclair A. J. Headache determines quality of life in idiopathic intracranial hypertension. J. Headache Pain 2015, 16, 521.10.1186/s10194-015-0521-9. PubMed DOI PMC
El Assar M.; Angulo J.; Santos-Ruiz M.; Ruiz de Adana J. C.; Pindado M. L.; Sánchez-Ferrer A.; Hernández A.; Rodríguez-Mañas L. Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. J. Physiol. 2016, 594, 3045–3060. 10.1113/jp271836. PubMed DOI PMC
Cremades A.; Ruzafa C.; Monserrat F.; López-Contreras A.; Peñafiel R. Influence of dietary arginine on the anabolic effects of androgens. J. Endocrinol. 2004, 183, 343–351. 10.1677/joe.1.05783. PubMed DOI
Fiamoncini J.; Fernandes Barbosa C.; Arnoni Junior J. R.; Araújo Junior J. C.; Taglieri C.; Szego T.; Gelhaus B.; Possolo de Souza H.; Daniel H.; Martins de Lima T. Roux-en-Y Gastric Bypass Surgery Induces Distinct but Frequently Transient Effects on Acylcarnitine, Bile Acid and Phospholipid Levels. Metabolites 2018, 8, 83.10.3390/metabo8040083. PubMed DOI PMC