Measuring respiratory and heart rate using a fiber optic interferometer: A pilot study in a neonate model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36545663
PubMed Central
PMC9760927
DOI
10.3389/fped.2022.957835
Knihovny.cz E-zdroje
- Klíčová slova
- animal testing, biosensor, interferometer, newborn, non-contact monitoring, vital signs,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The study aim was to test the safety and efficacy of a pad with optic fibers developed for monitoring newborn respiratory rate (RR) and heart rate (HR). METHODS: Thirty New Zealand White rabbits were included, divided by weight into three groups. RR and HR were measured using two methods for each rabbit: ECG electrodes as the reference method and a newly developed pad with an experimental fiber optic system (EFOS) as the experimental method. RESULTS: Analysis was performed on data for 29 rabbits (10 female, 34%; 19 male, 66%). EFOS performed better at measuring RR compared with HR. RR values did not differ significantly between the methods for the whole group (p = 0.151) or within each sex (female: p > 0.999; male: p = 0.075). Values for HR, however, did differ between methods for the whole group of animals (p < 0.001) and also within groups by sex (female: p < 0.001; male: p = 0.006). CONCLUSION: The results of this preclinical study demonstrate the potential of this non-invasive method using a fiber optic pad to measure HR and RR.
Biomedical Research Center University Hospital Hradec Kralove Hradec Kralove Czech Republic
Centre for Cardiovascular Research and Development American Heart Poland Inc Kostkowice Poland
Department of Neonatology University Hospital Ostrava Ostrava Czech Republic
Department of Pediatrics and Prenatal Cardiology University Hospital Ostrava Ostrava Czech Republic
Faculty of Medicine University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Gomella TL, Cunningham MD, Eyal FG. Neonatology: Management, procedures, on-call problems, diseases and drugs. 6th ed. New York: McGraw Hill Medical; (2009).
Villarroel M, Chaichulee S, Jorge J, Davis S, Green G, Arteta C, et al. Non-contact physiological monitoring of preterm infants in the neonatal intensive care unit. NPJ Digit Med. (2019) 2(1):128. 10.1038/s41746-019-0199-5 PubMed DOI PMC
Lloyd R, Goulding R, Filan P, Boylan G. Overcoming the practical challenges of electroencephalography for very preterm infants in the neonatal intensive care unit. Acta Paediatr. (2015) 104(2):152–7. 10.1111/apa.12869 PubMed DOI PMC
Cobos-Torres JC, Abderrahim M, Martínez-Orgado J. Non-contact, simple neonatal monitoring by photoplethysmography. Sensors. (2018) 18(12):4362. 10.3390/s18124362 PubMed DOI PMC
Fan J, Chen Y, Yan H, Niimi M, Wang Y, Liang J. Principles and applications of rabbit models for atherosclerosis research. J Atheroscler Thromb. (2018) 25(3):213–20. 10.5551/jat.RV17018 PubMed DOI PMC
Pritchett-Corning K, Girod A, Avellaneda G, Fritz PE, Chou S, Brown M. Handbook of Clinical Signs in Rodents and Rabbits. Charles River. (2010). 325 p.
Brown DA, Cameron CB, Keolian RM, Gardner DL, Garrett SL. Symmetric 3×3 coupler-based demodulator for fiber optic interferometric sensors. In: DePaula RP, Udd E, editors. Fiber optic and Laser sensors IX. Boston: SPIE; (1991). p. 328–35.
Todd MD, Johnson GA, Chang CC. Passive, light intensity-independent interferometric method for fibre bragg grating interrogation. Electron Lett. (1999) 35(22):1970. 10.1049/el:19991328 DOI
Maurya L, Kaur P, Chawla D, Mahapatra P. Non-contact breathing rate monitoring in newborns: a review. Comput Biol Med. (2021) 132:104321. 10.1016/j.compbiomed.2021.104321 PubMed DOI
Anton O, Fernandez R, Rendon-Morales E, Aviles-Espinosa R, Jordan H, Rabe H. Heart rate monitoring in newborn babies: a systematic review. Neonatology. (2019) 116(3):199–210. 10.1159/000499675 PubMed DOI
Blanik N, Heimann K, Pereira C, Paul M, Blazek V, Venema B, et al. Remote vital parameter monitoring in neonatology—robust, unobtrusive heart rate detection in a realistic clinical scenario. Biomed Tech. (2016) 61(6):631–43. 10.1515/bmt-2016-0025 PubMed DOI
Pereira CB, Yu X, Goos T, Reiss I, Orlikowsky T, Heimann K, et al. Noncontact monitoring of respiratory rate in newborn infants using thermal imaging. IEEE Trans Biomed Eng. (2019) 66(4):1105–14. 10.1109/TBME.2018.2866878 PubMed DOI
Hassan MA, Malik AS, Fofi D, Saad N, Meriaudeau F. Novel health monitoring method using an RGB camera. Biomed Opt Express. (2017) 8(11):4838–54. 10.1364/BOE.8.004838 PubMed DOI PMC
Sato S, Ishida-Nakajima W, Ishida A, Kawamura M, Miura S, Ono K, et al. Assessment of a new piezoelectric transducer sensor for noninvasive cardiorespiratory monitoring of newborn infants in the NICU. Neonatology. (2010) 98(2):179–90. 10.1159/000283994 PubMed DOI
Nukaya S, Sugie M, Kurihara Y, Hiroyasu T, Watanabe K, Tanaka H. A noninvasive heartbeat, respiration, and body movement monitoring system for neonates. Artif Life Robotics. (2014) 19(4):414–9. 10.1007/s10015-014-0179-4 DOI
Gangaram-Panday NH, van Essen T, Goos TG, de Jonge RCJ, Reiss IKM, van Weteringen W. Dynamic light scattering: a new noninvasive technology for neonatal heart rate monitoring. Neonatology. (2020) 117(3):279–86. 10.1159/000506771 PubMed DOI