Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
no. MZE-RO1422
the Ministry of Agriculture of the Czech Republic, Institutional Support
no. QK1910300
the Ministry of Agriculture of the Czech Republic, Institutional Support,
MEYS Grant No. LM2018100
The METROFOOD-CZ Research Infrastructure Project
PubMed
36547928
PubMed Central
PMC9781844
DOI
10.3390/md20120781
PII: md20120781
Knihovny.cz E-zdroje
- Klíčová slova
- Dunaliella salina, adherence, algae, cytokine, prebiotic,
- MeSH
- antioxidancia farmakologie metabolismus MeSH
- biomasa MeSH
- Caco-2 buňky MeSH
- Chlorophyceae * MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mikrořasy * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
The unicellular green microalga Dunaliella is a potential source of a wide range of nutritionally important compounds applicable to the food industry. The aim of this study was to assess the effect of Dunaliella salina dried biomass on the growth and adherence of 10 strains of Lactobacillus, Lacticaseibacillus, and Bifidobacterium. The immunomodulatory, antioxidant, and cytotoxic effects of D. salina on human peripheral mononuclear cells and simulated intestinal epithelial cell lines Caco-2 and HT-29 were evaluated. Furthermore, the hypocholesterolemic effects of the microalgae on lipid metabolism in rats fed a high-fat diet were analyzed. The addition of D. salina biomass had a positive effect on the growth of nine out of 10 probiotics and promoted the adherence of three bifidobacteria strains to human cell lines. The antioxidant and immunomodulatory properties of D. salina were concentration-dependent. The inflammatory cytokines (TNF-α and IL-6) were significantly increased following Dunaliella stimulation at the lowest concentration (0.5% w/v). Eight week supplementation of D. salina to the diet of hypercholesteromic rats significantly decreased the serum concentrations of LDL-C, VLDL, IDL-B, and IDL-C. D. salina is not cytotoxic in intestinal cell models; it promotes adherence of selected bifidobacteria, it affords immunomodulatory and antioxidant effects, and its addition to diets may help decrease atherosclerosis risk factors.
Department of Biotechnology University of Chemistry and Technology 162 00 Prague Czech Republic
Department of Microbiology and Technology Dairy Research Institute Ltd 160 00 Prague Czech Republic
Zobrazit více v PubMed
Sathasivam R., Radhakrishnan R., Hashem A., Abd_Allah E.F. Microalgae metabolites: A rich source for food and medicine. Saudi. J. Bio. Sci. 2019;26:709–722. doi: 10.1016/j.sjbs.2017.11.003. PubMed DOI PMC
Yücel H.G., Karatay S.E., Aksu Z., Dönmez G. Lithium (I) biofortified Dunaliella salina as a potential functional nutrition supplement. Algal Res. 2021;56:102257. doi: 10.1016/j.algal.2021.102257. DOI
Bansal M.P., Jaswal S. Hypercholesterolemia induced oxidative stress is reduced in rats with diets enriched with supplement from Dunaliella salina algae. Am. J. Biomed. Sci. 2009;1:196–204. doi: 10.5099/aj090300196. DOI
Singh P., Baranwal M., Reddy S.M. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm. Biol. 2016;54:2269–2275. doi: 10.3109/13880209.2016.1153660. PubMed DOI
da Silva M.R.O.B., Moura Y.A.S., Converti A., Porto A.L.F., Marques D.D.A.V., Bezerra R.P. Assessment of the potential of Dunaliella microalgae for different biotechnological applications: A systematic review. Algal Res. 2021;58:102396. doi: 10.1016/j.algal.2021.102396. DOI
Jayappriyan K.R., Rajkumar R., Venkatakrishnan V., Nagaraj S., Rengasamy R. In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells. Biomed. Prev. Nutr. 2013;3:99–105. doi: 10.1016/j.bionut.2012.08.003. DOI
de Souza Celente G., Rizzetti T.M., Sui Y., de Souza Schneider R.D.C. Potential use of microalga Dunaliella salina for bioproducts with industrial relevance. Biomass Bioenergy. 2022;167:106647. doi: 10.1016/j.biombioe.2022.106647. DOI
Camacho F., Macedo A., Malcata F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Mar. Drugs. 2019;17:312. doi: 10.3390/md17060312. PubMed DOI PMC
Sui Y., Vlaeminck S.E. Dunaliella microalgae for nutritional protein: An undervalued asset. Trends Biotechnol. 2020;38:10–12. doi: 10.1016/j.tibtech.2019.07.011. PubMed DOI
Ververis E., Ackerl R., Azzollini D., Colombo P.A., de Sesmaisons A., Dumas C., Gelbmann W. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Int. Food Res. J. 2020;137:109515. doi: 10.1016/j.foodres.2020.109515. PubMed DOI
E.F.S.A. EU Novel Food Catalogue (v.1.1) European Food Safety Authority; Parma, Italy: 2020.
Torres-Tiji Y., Fields F.J., Mayfield S.P. Microalgae as a future food source. Biotechnol. Adv. 2020;41:107536. doi: 10.1016/j.biotechadv.2020.107536. PubMed DOI
Boricha A.A., Shekh S.L., Pithva S.P., Ambalam P.S., Vyas B.R. In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. LWT. 2019;106:201–208. doi: 10.1016/j.lwt.2019.02.021. DOI
Wang G., Yu H., Feng X., Tang H., Xiong Z., Xia Y., Ali L., Song X. Specific bile salt hydrolase genes in Lactobacillus plantarum AR113 and relationship with bile salt resistance. LWT. 2021;145:111208. doi: 10.1016/j.lwt.2021.111208. DOI
Rajoka M.S.R., Mehwish H.M., Siddiq M., Haobin Z., Zhu J., Yan L., Shao D., Xu X., Shi J. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT. 2017;84:271–280. doi: 10.1016/j.lwt.2017.05.055. DOI
Plamada D., Vodnar D.C. Polyphenols—Gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients. 2021;14:137. doi: 10.3390/nu14010137. PubMed DOI PMC
de Jesus Raposo M.F., De Morais A.M.M.B., De Morais R.M.S.C. Emergent sources of prebiotics: Seaweeds and microalgae. Mar. Drugs. 2016;14:27. doi: 10.3390/md14020027. PubMed DOI PMC
Gibson G.R., Scott K.P., Rastall R.A., Tuohy K.M., Hotchkiss A., Dubert-Ferrandon A., Gareau M., Murphy E.F., Saulnier D., Loh G., et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods. 2010;7:1–19. doi: 10.1616/1476-2137.15880. DOI
Hyrslova I., Krausova G., Smolova J., Stankova B., Branyik T., Malinska H., Huttl M., Kana A., Curda L., Doskocil I. Functional properties of chlorella vulgaris, colostrum, and bifidobacteria, and their potential for application in functional foods. Appl. Sci. 2021;11:5264. doi: 10.3390/app11115264. DOI
Hyrslova I., Krausova G., Smolova J., Stankova B., Branyik T., Malinska H., Huttl M., Kana A., Doskocil I., Curda L. Prebiotic and immunomodulatory properties of the microalga chlorella vulgaris and its synergistic triglyceride-lowering effect with bifidobacteria. Fermentation. 2021;7:125. doi: 10.3390/fermentation7030125. DOI
Ścieszka S., Gorzkiewicz M., Klewicka E. Innovative fermented soya drink with the microalgae Chlorella vulgaris and the probiotic strain Levilactobacillus brevis ŁOCK 0944. LWT. 2021;151:112131. doi: 10.1016/j.lwt.2021.112131. DOI
Beheshtipour H., Mortazavian A.M., Mohammadi R., Sohrabvandi S., Khosravi-Darani K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr. Rev. Food Sci. Food Saf. 2013;12:144–154. doi: 10.1111/1541-4337.12004. DOI
Harari A., Harats D., Marko D., Cohen H., Barshack I., Kamari Y., Gonen A., Gerber Y., Ben-Amotz A., Shaish A. A 9-cis β-carotene–enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice. J. Nutr. 2008;138:1923–1930. doi: 10.1093/jn/138.10.1923. PubMed DOI
Vlachová M., Heczková M., Jirsa M., Poledne R., Kovar J. The response of hepatic transcriptome to dietary cholesterol in Prague hereditary hypercholesterolemic (PHHC) rat. Physiol. Res. 2014;63:S429–S437. doi: 10.33549/physiolres.932894. PubMed DOI
Gupta S., Gupta C., Garg A.P., Prakash D. Prebiotic efficiency of blue green algae on probiotics microorganisms. J. Microbiol. Exp. 2017;4:4–7. doi: 10.15406/jmen.2017.04.00120. DOI
Kent M., Welladsen H.M., Mangott A., Li Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE. 2015;10:e0118985. doi: 10.1371/journal.pone.0118985. PubMed DOI PMC
Sui Y., Muys M., Vermeir P., D’Adamo S., Vlaeminck S.E. Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. Bioresour. Technol. 2019;275:145–152. doi: 10.1016/j.biortech.2018.12.046. PubMed DOI
Barros de Medeiros V.P., da Costa W.K.A., da Silva R.T., Pimentel T.C., Magnani M. Microalgae as source of functional ingredients in new-generation foods: Challenges, technological effects, biological activity, and regulatory issues. Crit. Rev. Food Sci. Nutr. 2021;62:4929–4950. doi: 10.1080/10408398.2021.1879729. PubMed DOI
Barros de Medeiros V.P., de Souza E.L., de Albuquerque T.M.R., da Costa Sassi C.F., dos Santos Lima M., Sivieri K., Pimentel T.C., Magnani M. Freshwater microalgae biomasses exert a prebiotic effect on human colonic microbiota. Algal Res. 2021;60:102547. doi: 10.1016/j.algal.2021.102547. DOI
Gibson G.R., Probert H.M., van Loo J.A.E., Roberfroid M.B. Dietary modulation of human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004;17:257–259. doi: 10.1079/NRR200479. PubMed DOI
Zhou J., Wang M., Bäuerl C., Cortés-Macías E., Calvo-Lerma J., Collado M.C., Barba F.J. The impact of liquid-pressurized extracts of Spirulina, Chlorella and Phaedactylum tricornutum on in vitro antioxidant, antiinflammatory and bacterial growth effects and gut microbiota modulation. Food Chem. 2023;401:134083. doi: 10.1016/j.foodchem.2022.134083. PubMed DOI
Ambrico A., Trupo M., Magarelli R., Balducchi R., Ferraro A., Hristoforou E., Marino T., Musmarra D., Casella P., Molino A. Effectiveness of Dunaliella salina extracts against Bacillus subtilis and bacterial plant pathogens. Pathogens. 2020;9:613. doi: 10.3390/pathogens9080613. PubMed DOI PMC
Mendiola J.A., Santoyo S., Cifuentes A., Reglero G., Ibanez E., Señoráns F.J. Antimicrobial activity of sub-and supercritical CO2 extracts of the green alga Dunaliella salina. J. Food Prot. 2008;71:2138–2143. doi: 10.4315/0362-028X-71.10.2138. PubMed DOI
Herrero M., Ibáñez E., Cifuentes A., Reglero G., Santoyo S. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J. Food Prot. 2006;69:2471–2477. doi: 10.4315/0362-028X-69.10.2471. PubMed DOI
Krausova G., Hynstova I., Svejstil R., Mrvikova I., Kadlec R. Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model. Processes. 2021;9:569. doi: 10.3390/pr9040569. DOI
Krausova G., Hyrslova I., Jakubec M., Hynstova I. In vitro evaluation of prebiotics on adherence of lactobacilli. J. Microb. Biochem. Technol. 2016;8:6–8.
Altamimi M., Abdelhay O., Rastall R.A. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells. Anaerobe. 2016;39:136–142. doi: 10.1016/j.anaerobe.2016.03.010. PubMed DOI
Jafari S., Mobasher M.A., Najafipour S., Ghasemi Y., Mohkam M., Ebrahimi M.A., Mobasher N. Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur J. Nat. Pharm. Prod. 2018;13:e13226. doi: 10.5812/jjnpp.13226. DOI
Eslami M., Bahar A., Keikha M., Karbalaei M., Kobyliak N.M., Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergol. Immunopathol. 2020;48:771–788. doi: 10.1016/j.aller.2020.04.005. PubMed DOI
Caroprese M., Albenzio M., Ciliberti M.G., Francavilla M., Sevi A. A mixture of phytosterols from Dunaliella tertiolecta affects proliferation of peripheral blood mononuclear cells and cytokine production in sheep. Vet. Immunol. Immunopathol. 2012;150:27–35. doi: 10.1016/j.vetimm.2012.08.002. PubMed DOI
An H.J., Rim H.K., Lee J.H., Seo M.J., Hong J.W., Kim N.H., Myung N.Y., Moon P.D., Choi I.Y., Na H.J., et al. Effect of Chlorella vulgaris on immune-enhancement and cytokine production in vivo and in vitro. Food Sci. Biotechnol. 2008;17:953–958.
Goyal M., Baranwal M., Pandey S.K., Reddy M.S. Hetero-polysaccharides secreted from Dunaliella salina exhibit immunomodulatory activity against peripheral blood mononuclear cells and RAW 264.7 macrophages. Indian J. Microbiol. 2019;59:428–435. doi: 10.1007/s12088-019-00818-w. PubMed DOI PMC
Sibi G., Rabina S. Inhibition of pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacogn. Res. 2016;8:118. doi: 10.4103/0974-8490.172660. PubMed DOI PMC
Zamani H., Rastegari B., Varamini M. Antioxidant and anti-cancer activity of Dunaliella salina extract and oral drug delivery potential via nano-based formulations of gum Arabic coated magnetite nanoparticles. J Drug Deliv Sci Technol. 2019;54:101278. doi: 10.1016/j.jddst.2019.101278. DOI
Roy U.K., Nielsen B.V., Milledge J.J. Antioxidant production in Dunaliella. Appl. Sci. 2021;11:3959. doi: 10.3390/app11093959. PubMed DOI PMC
Tong L., Chuang C.C., Wu S., Zuo L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015;367:18–25. doi: 10.1016/j.canlet.2015.07.008. PubMed DOI
Taylor P., Colman L., Bajoon J. The search for plants with anticancer activity: Pitfalls at the early stages. J. Ethnopharmacol. 2014;158:246–254. doi: 10.1016/j.jep.2014.10.034. PubMed DOI
Pontier C., Pachot J., Botham R., Lenfant B., Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: Role of the mucus layer. J. Pharm. Sci. 2001;90:1608–1619. doi: 10.1002/jps.1111. PubMed DOI
Senousy H.H., Abd Ellatif S., Ali S. Assessment of the antioxidant and anticancer potential of different isolated strains of cyanobacteria and microalgae from soil and agriculture drain water. Environ. Sci. Pollut. Res. 2020;27:18463–18474. doi: 10.1007/s11356-020-08332-z. PubMed DOI
Gómez-Zorita S., González-Arceo M., Trepiana J., Eseberri I., Fernández-Quintela A., Milton-Laskibar I., Aguirre L., González M., Portillo M.P. Anti-obesity effects of macroalgae. Nutrients. 2020;12:2378. doi: 10.3390/nu12082378. PubMed DOI PMC
Shaish A., Horari A., Kamari Y., Cohen H., Schonfeld G., Harats D. The Alga Dunaliella. CRC Press; Boca Raton, FL, USA: 2019. Application of Dunaliella in atherosclerosis; pp. 475–494.
El-Baz F.K., Aly H.F., Salama A.A. Toxicity assessment of the green Dunaliella salina microalgae. Toxicol. Rep. 2019;6:850–861. doi: 10.1016/j.toxrep.2019.08.003. PubMed DOI PMC
Krausova G., Hyrslova I., Hynstova I. In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation. 2019;5:100. doi: 10.3390/fermentation5040100. DOI
Musilova S., Modrackova N., Doskocil I., Svejstil R., Rada V. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines. Acta Microbiol. Immunol. Hung. 2017;64:415–422. doi: 10.1556/030.64.2017.029. PubMed DOI
Hyrslova I., Kana A., Kantorova V., Krausova G., Mrvikova I., Doskocil I. Selenium accumulation and biotransformation in Streptococcus, Lactococcus, and Enterococcus strains. J. Funct. Foods. 2022;92:105056. doi: 10.1016/j.jff.2022.105056. DOI